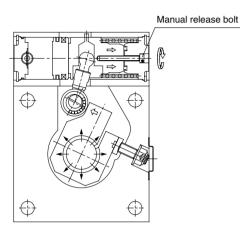

Cylinder with Lock *Series CLS* ø125, ø140, ø160, ø180, ø200, ø250

A locking cylinder ideal for intermediate stops, emergency stops and drop prevention.

Series Variations

Series	Action	Туре	Standard variations With rod boot		Bore size (mm)	Lock holding force (kN)	Maximum stroke (mm)
					125	8.4	
Cylinder with lock Series CLS	Double Single roo Series acting CLS	Single rod			140		Maximum
					160	13.8	1600
					180	17.4	Maximum
					200	21.5	2000
					250	33.6	Maximum 2400



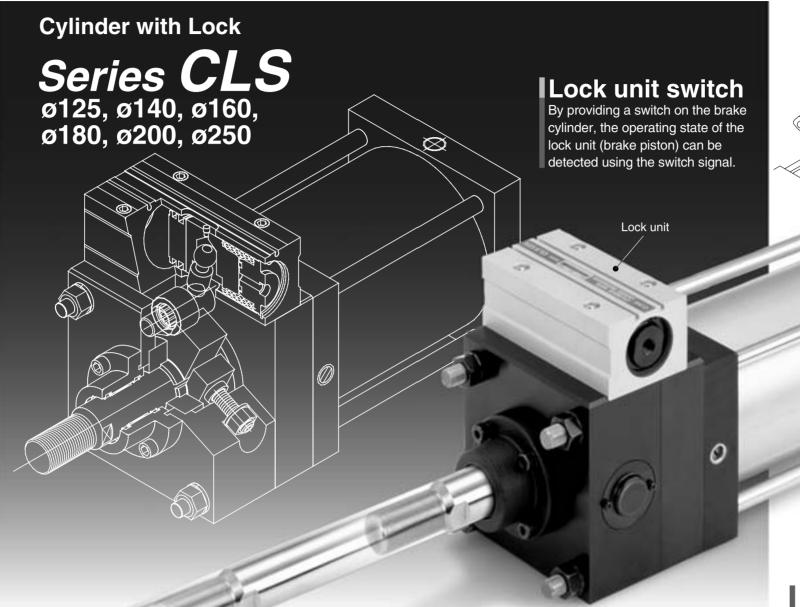
CLJ2

A locking cylinder ideal for intermediate stops, emergency stops and drop prevention.

Manual unlocking function

Even if the air supply is cut off or discharged, the lock can be released by screwing in the manual release bolt (hexagon socket head screw).

Design minimizes influences of unlocking air quality


A design largely unaffected by factors such as moisture and drainage in compressed air has been realized by separating the lock mechanism and the brake cylinder.

Can be locked in both directions

An equal holding force can be obtained on either reciprocating stroke of the cylinder.

Short body lock unit

Overall length has been reduced by using an independent brake cylinder (-15% compared to previous series). Mass reduction has also been realized through parts simplification (max. -40% compared to previous series)

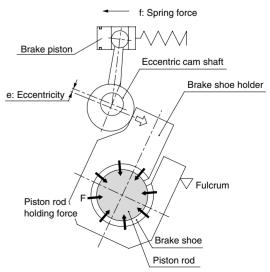
Steady holding force

Outstanding durability and steady holding force are maintained by using a brake shoe with superior wear resistance.

Maintenance simplified

The lock monitor makes it possible to confirm the operating state of the lock unit (brake piston) and the state of wear for each part, providing a guide for maintenance.

SMC




Fail safe construction

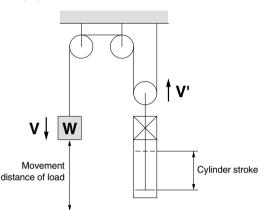
Since the mechanism locks when air pressure is exhausted, safe operation is possible even when there is a failure in the air supply or power supply, etc.

Construction principle

Uses an energizing mechanism based on the wedge effect of the eccentric cam shaft and the lever principle of the shoe holder.

D-	
-X	
Indivi -X□	dual

Series CLS Model Selection

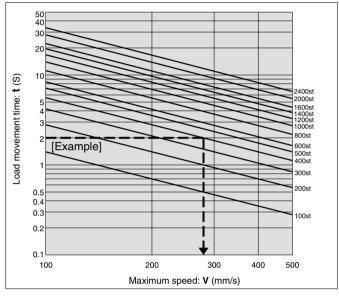

Caution on Model Selection

A Caution

 In order that the originally selected maximum speed is not exceeded, be certain to use a speed controller and adjust if so that movement through the total movement distance of the load takes place in no less than the applicable movement time. The movement time is the time that is necessary for the load to travel the total movement distance from the start without any intermediate stops.

2. In cases where the cylinder stroke and the movement distance of the load are different (double speed mechanism, etc.), use the movement distance of the load for selection purposes.

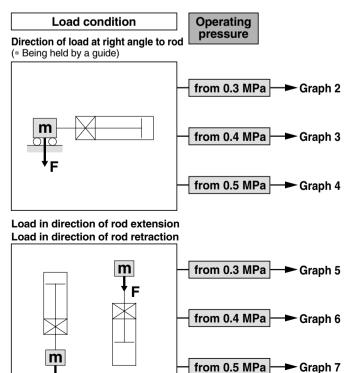
3. Shown below is an example of a model selection procedure for an intermediate stop application (including an emergency stop in operation). Only when locking in a drop prevention application, when no kinetic energy is applied, the maximum load mass should be determined by using graphs 5 through 7 on page 785 (taking into consideration the upper limit of the load mass at a maximum speed of 100 mm/s).

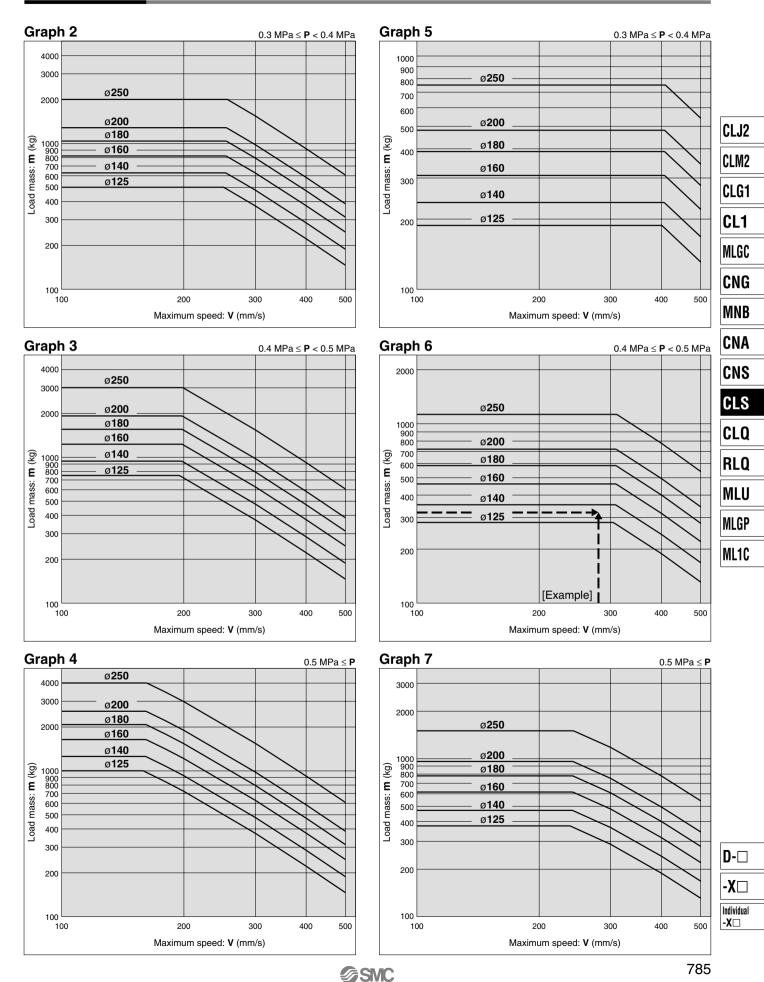

Selection Example

- Load mass: **m** = 320 kg
- Movement distance: st = 400 mm
- Movement time: t = 2 s
- Load condition: Vertical downward = Load in direction of rod extension
- Operating pressure: **P** = 0.4 MPa
- Step 1: From graph 1 find the maximum movement speed of the load \therefore Maximum speed V: approx. 280 mm/s
- Step 2: Select Graph 6 based upon the load condition and operating pressure, and then from the intersection of the maximum speed V = 280 mm/s found in Step 1, and the load mass m = 320 kg
 - \therefore ø140 \rightarrow select a CLS140 or larger bore size.

Step 1 Find the maximum load speed: V.

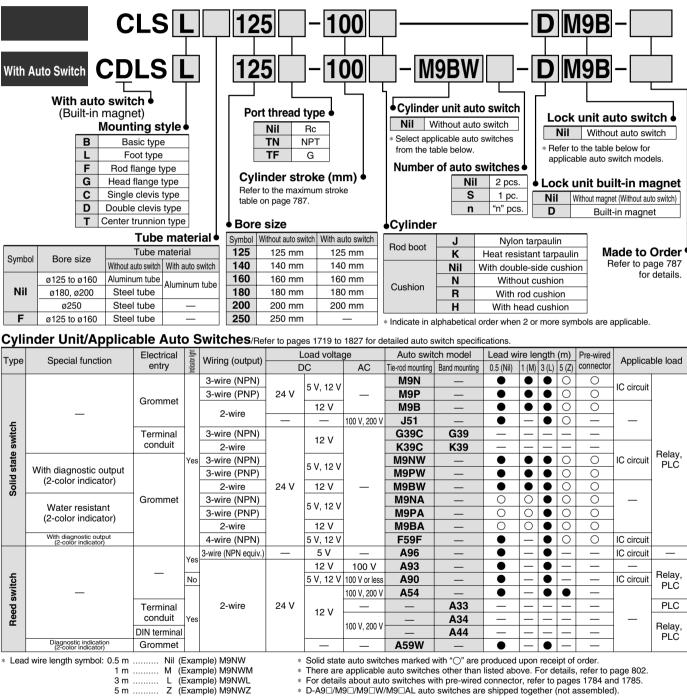
Find the maximum load speed: \bm{V} (mm/s) from the load movement time: \bm{t} (s) and the movement distance: \bm{st} (mm).


Graph 1


Step 2

Find the cylinder bore size.

Select a graph based upon the load condition and operating pressure, and then find the point of intersection for the maximum speed found in Step 1 and the load mass. Select the bore size on the line above the point of intersection.



Selection Graph

Cylinder with Lock Double Acting, Single Rod Series CLS ø125, ø140, ø160, ø180, ø200, ø250

How to Order

D-A9□/M9□/M9□W/M9□AL auto switches are shipped together (not assembled).

(Only auto switch brackets are assembled at the time of shipment.)

Lock Unit/Applicable Auto Switches

Lead wire length (m) Auto switch Load voltage Special Wiring (output) Auto switch model Applicable load function type DC AC 0.5 (Nil) 1 (M) 3 (L) 5 (Z) 3-wire (NPN) M9N $\bullet \bullet \circ$ IC circuit 5 V, 12 V Relav Solid state 3-wire (PNP) M9P • • 0 Yes PLĆ 24 V M9B • 0 Grommet 12 V • 2-wire 5 V, 12 V 100 V or less A90 • IC circuit No Relay, PLC Reed 12 V 100 V A93 Yes

D-A90/M90 auto switches are shipped together (not assembled)

Cylinder Specifications

Made to Order: For details, refer to pages 1829 to 1954.)

Symbol	Specifications
-XA🗆	Change of rod end style
-XC3	Special port location
-XC14	Change of trunnion bracket mounting position (125, 140, 160 only)
-XC35	With coil scraper (125, 140, 160 only)*
100 1-	

* Ø180 to Ø250 come with a coil scraper as standard.

Bore size (mm)	125	140	160	180	200	250		
Туре		Not required (Non-lube)						
Fluid		Air						
Proof pressure		1.57 MPa 1.2 MPa [*]						
Max. operating pressure		0.97 MPa 0.7 MPa*						
Min. operating pressure		0.08 MPa						
Piston speed		50 to 500 mm/s**						
Cushion		50 to 500 mm/s** Yes						
Ambient and fluid temperature	Withou With							
Stroke length tolerance	to 250	to 250: ${}^{+1.0}_{0}$, 251 to 1000: ${}^{+1.4}_{0}$, 1001 to 1500: ${}^{+1.8}_{0}$,						
	Basic typ	1.2 MPa* 0.97 MPa 0.7 MPa* 0.08 MPa 50 to 500 mm/s** Yes Without auto switch: 0°C to 70°C (with no freezing) With auto swiatch: 0°C to 60°C						

* There are load limitations depending on the piston speed when locked, the mounting method, and the operating pressure.

Lock Specifications

Bore size (mm)	125	140	160	180	200	250	CLS	
Locking action		Spring locking (exhaust locking)						
Unlocking pressure		0.25 MPa or more						
Locking pressure		0.20 MPa or less						
Max. operating pressure		1.0 MPa						
Locking direction		Both directions					MLU	
Holding force kN	8.4	10.5	13.8	17.4	21.5	33.6	MLGP	
· Do ouro to make adiadar coloction	, in accordan	oo with the m	othod sives	n nogo 704				

* Be sure to make cylinder selections in accordance with the method given on page 784.

Cylinder Stroke

	Unit: mm						
Tube material	Aluminum alloy	Carbon steel tube					
Bore size (mm)	Basic type, Head flange type, Single clevis type, Double clevis type, Center trunnion type, Foot type, Rod flange type	Basic type, Head flange type, Single clevis type, Double clevis type, Center trunnion type	Foot type Rod flange type				
125, 140	1000 or less	1000 or less	1600 or less				
160	1200 or less	1200 or less	1600 or less				
180	_	1200 or less	2000 or less				
200	_	1200 or less	2000 or less				
250		1200 or less	2400 or less				

Cylinder Stroke/Auto Switch Mounting on Cylinder Unit (Built-in Magnet)

Refer to the minimum auto switch mounting stroke (page 800) for those with an auto switch.

		Unit: mm	1
Bore size (mm)	Basic type, Head flange type, Single clevis type, Double clevis type, Center trunnion type	Foot type Rod flange type	
125, 140	1000 or less	1400 or less	D -□
160	1200 or less	1400 or less	- X □
180	1200 or less	1500 or less	Individual
200	998 or less	998 or less	-X
Note	For ø200, 998 to 1200 strokes are available as made to order.	For ø200, 998 to 1500 strokes are available as made to order.	

Stopping Accuracy

			Unit: mm			
	Piston speed (mm/s)					
Lock type	100	300	500			
Spring lock	±0.5	±1.0	±2.0			

Conditions:

Horizontal, Supply pressure P = 0.5 MPa Load mass Upper limit of allowed value

Solenoid valve for locking ... Mounted directly to unlocking port Maximum value from range of 100 measured stopping positions

Class 2 Pressure Vessel

A class 2 pressure vessel will be required for strokes exceeding those shown below.

Bore size (mm)	Cylinder stroke (mm)
180	1569
200	998
250	813

Refer to pages 799 to 802 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height
- Operating range
- · Switch mounting bracket: Part no.

CNA

CNS

ML1C

Mounting Bracket Part No.

Bore size (mm)	125	140	160	180	200	250
Foot type Note 1)	CS1-L12	CS1-L14	CS1-L16	CS1-L18	CS1-L20	CS1-L25
Rod flange type Note 2)	CS1-FL12	CS1-FL14	CS1-FL16	CS1-FL18	CS1-FL20	CS1-FL25
Head flange type	CS1-F12	CS1-F14	CS1-F16	CS1-F18	CS1-F20	CS1-F25
Single clevis type	CS1-C12	CS1-C14	CS1-C16	CS1-C18	CS1-C20	CS1-C25
Double clevis Note 3)	CS1-D12	CS1-D14	CS1-D16	CS1-D18	CS1-D20	CS1-D25

Note 1) When ordering foot brackets, 2 pcs. should be ordered for each cylinder. Note 2) ø125 to ø250 front flange types use series CS1 long stroke flanges. Note 3) A clevis pin and cotter pins (2 pcs.) are packed with the double clevis type.

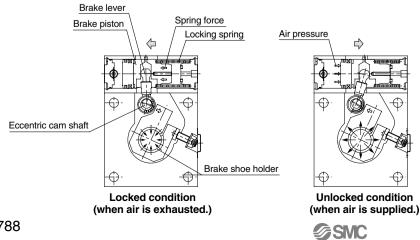
Accessories

Rod Boot Material

Symbol	Material	Max. ambient temperature			
J	Nylon tarpaulin	20°C			
к	Heat resistant tarpaulin	110°C*			
Mandan and Andrew State and Andrew State (1997)					

* Maximum ambient temperature for the rod boot itself.

Мо	unting brackets	Basic type	Foot type	Rod flange type	Head flange type	Single clevis type	Double clevis type	Center trunnion type
Standard equipment	Clevis pin	—	—	—	_	_	•	—
	Rod end nut	•	•	•	•	•	•	•
Ontions	Single knuckle joint	•	•	•	•	•	•	•
Options	Double knuckle joint (with pin)	•	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•	•

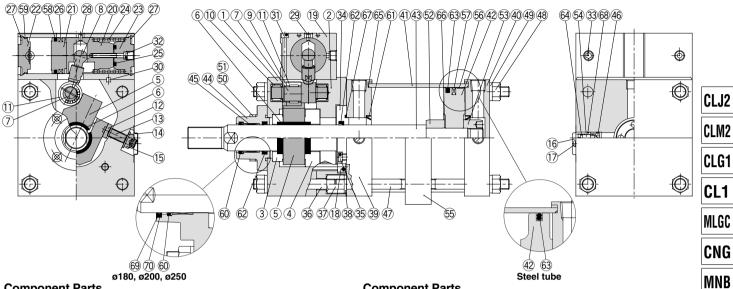

* Refer to the accessory models and dimensions on page 797.

e used together.

VIa	ISS/Numbers inside	() are f	for steel	tube			Unit: k			
	Bore size (mm)	125	140	160	180	200	250			
	Lock unit mass	9.40	11.37	16.93	26.20	36.4	61.70			
	Basic type	23.49 (24.96)	28.30 (30.11)	40.87 (43.08)	57.30 (63.91)	75.46 (82.01)	 (138.94			
	Foot type	25.12 (26.59)	30.82 (32.63)	43.67 (45.88)	61.50 (68.11)	80.34 (86.89)	 (148.44			
Basic mass	Flange type	26.17 (27.64)	33.30 (35.11)	47.26 (49.47)	67.13 (73.74)	87.37 (93.92)	 (160.78			
Basic	Single clevis type	26.56 (28.03)	32.59 (34.40)	46.36 (48.57)	65.69 (72.30)	85.36 (91.91)	 (157.33			
	Double clevis type (includes clevis pin & cotter pin)	27.02 (28.49)	33.34 (35.15)	47.21 (49.42)	67.37 (73.98)	87.39 (93.94)	 (160.52			
	Center trunnion type	27.62 (29.09)	34.03 (35.84)	48.27 (50.48)	68.46 (75.07)	89.45 (96.00)	 (166.78			
Additional mass 1.77 1.96 2.39 2.85 3.42 - per 100 mm of stroke (2.66) (3.01) (3.58) (4.95) (5.75) (9.01)										
iries	Single knuckle	0.91	1.16	1.56	3.07	2.90	5.38			
Accessories	Double knuckle (with pin)	1.37	1.81	2.48	4.74	4.59	9.22			
Acc	Rod end nut	0.16	0.16	0.23	0.33	0.56	1.01			

Additional mass 1.96/100 mm stroke Cylinder stroke 100 mm stroke 30.82 + 1.96 x 100/100 = 32.78 kg

Construction Principle



Spring locking (exhaust locking)

The brake piston actuated by the force of the spring turns the eccentric cam shaft via the brake lever. This turning force distorts the brake shoe holder due to the wedge effect of the cam, acting on the brake shoe and locking the piston rod by tightening on it with a large force.

Unlocking occurs when air pressure is supplied to the unlocking port, causing the brake piston to counteract the force of the spring and push the brake lever back. This removes the force which is distorting the shoe holder and unlocks the piston rod.

Construction

Component Parts

No.	Description	Material	Note
1	Cover A	Aluminum alloy	Black hard anodized (ø125, ø140, ø160)
-	Cover A	Aluminum alloy	Hard anodized & coated (ø180, ø200, ø250)
2	Cover B	Aluminum alloy	Black hard anodized (ø125, ø140, ø160)
2	COVER B	Aluminum alloy	Hard anodized & coated (ø180, ø200, ø250)
3	Thrust washer A	Carbon steel	Electroless nickel plated (ø125, ø140, ø160)
	Thrust washer A		Special treatment (ø180, ø200, ø250)
4	Thrust washer B	Carbon steel	Electroless nickel plated (ø125, ø140, ø160)
5	Brake shoe holder A	Chromium molybdenum steel	Special treatment
6	Brake shoe	Special friction material	
7	Eccentric cam shaft	Special steel	
8	Brake lever	Chromium molybdenum steel	Zinc chromated
9	Washer	Carbon steel	Zinc chromated
10	Needle bearing	-	
11	Needle bearing	-	
12	Stopper	Special steel	Electroless nickel plated
13	Adjustment screw	Chromium molybdenum steel	Zinc chromated
14	Conical spring washer	Spring steel	Zinc chromated
15	U nut	Carbon steel	Zinc chromated
16	Cover	Steel plate	Black zinc chromated
17	Cover holding screw	Carbon steel	
18	Cover holding bolt	Chromium molybdenum steel	Nickel plated
19	Brake tube	Aluminum alloy	Clear hard anodized
20	Brake piston A	Carbon steel	Nitriding
21	Brake piston B	Aluminum alloy	Chromated
22	Bottom plate	Aluminum alloy	Black anodized
23	Spring collar	Aluminum alloy	Black anodized
24	Brake spring	Steel wire	Zinc chromated
25	Bumper B	Polyurethane rubber	
26	Magnet	-	(Built-in magnet for lock unit)
27	Retaining ring	Carbon tool steel	Phosphate coated
28	Marker	Resin	White
29	Trim plate	Resin	
30	Key	Carbon steel	
31	Brake tube holding bolt	Chromium molybdenum steel	Nickel plated
32	Manual release bolt	Chromium molybdenum steel	Nickel plated
33	Plug with breathing hole	-	Black zinc chromated
34	Retaining plate B	Aluminum alloy	
35	Retaining plate holding bolt	Chromium molybdenum steel	Nickel plated
36	Unit holding tie-rod	Carbon steel	Chromated
37	Wing nut	Carbon steel	Nickel plated
38	Conical spring washer	Spring steel	Nickel plated
39	Rod cover	Rolled steel plate	Black coated
40	Head cover	Rolled steel plate	Black coated
		Aluminum alloy	Hard anodized (ø125 to ø200)
41	Cylinder tube	Carbon steel pipe	Hard chrome plated (ø125 to ø250)

		Steel tube	
Com	ponent Parts		
No.	Description	Material	Note
42	Piston	Aluminum alloy casting	In case of aluminum tube
42	Piston	Cast iron	In case of steel tube
43	Piston rod	Carbon steel	Hard chrome plated
44	Retaining plate	Cast iron	Black coated (ø125, ø140, ø160
45	Bushing	Copper alloy	
46	Valve guide	Brass	
47	Tie-rod	Carbon steel	Chromated
48	Tie-rod nut	Rolled steel plate	Black zinc chromated
49	Spring washer	Steel wire	Black zinc chromated
50	Retaining plate bolt	Chromium molybdenum steel	Black zinc chromated
51	Spring washer	Steel wire	Black zinc chromated
52	Cushion ring A	Rolled steel	Zinc chromated
53	Cushion ring B	Rolled steel	Zinc chromated
54	Cushion valve	Rolled steel	Electroless nickel plated
55	Tie-rod reinforcement ring	Rolled steel	Black coated (long stroke)
56	Wear ring	Resin	In case of aluminum tube
57	Magnet	-	For built-in magnet type
58	Piston seal	NBR	
59	Tube gasket	NBR	
60	Wiper ring	NBR	
61	Cushion seal	NBR	
62	Rod seal	NBR	
63	Piston seal	NBR	
64	Valve seal	NBR	
65	Tube gasket	NBR	
66	Piston gasket	NBR	
67	Retaining plate gasket	NBR	
68	Guide gasket	NBR	
69	Coil scraper	Phosphor bronze	(ø180, ø200, ø250)
70	Coil scraper holder	Aluminum alloy	Black anodized (ø180, ø200, ø250
Donl	acoment Darte: Sea		

Replacement Parts: Seal Kit

opiacomonti		
Bore size (mm)	Order No.	Contents
125	CLS125-PS	
140	CLS140-PS	
160	CLS160-PS	A set of above Nos.
180	CLS180-PS	0, 62, 63, 64, 65 & 67
200	CLS200-PS	
250	CLS250-PS	

* Since the lock section for Series CLS is normally replaced as a unit, replacement seal kits are for the cylinder section only.

** Seal kits are sets consisting of items 60, 62, 63, 64, 65 and 67, which can be ordered using the order number for each cylinder bore size.

* Seal kit includes a grease pack (ø125 to ø160: 40 g, ø180, ø200: 50 g, ø250: 60 g). Order with the following part number when only the grease pack is needed. Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)

CNA

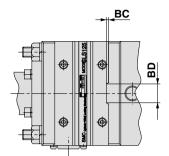
CNS

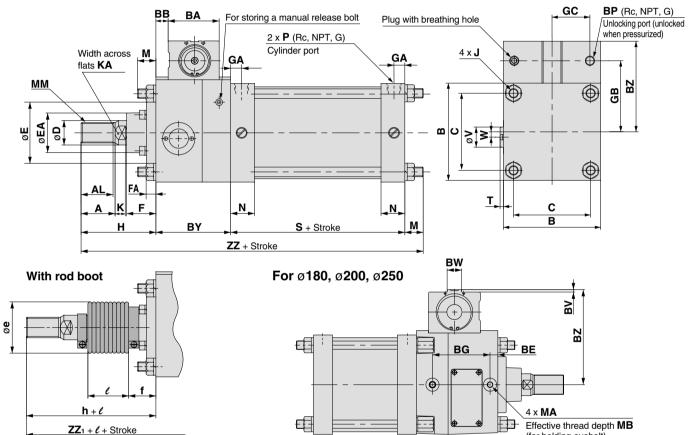
CLS

CLQ

RLQ

MLU


MLGP


ML1C

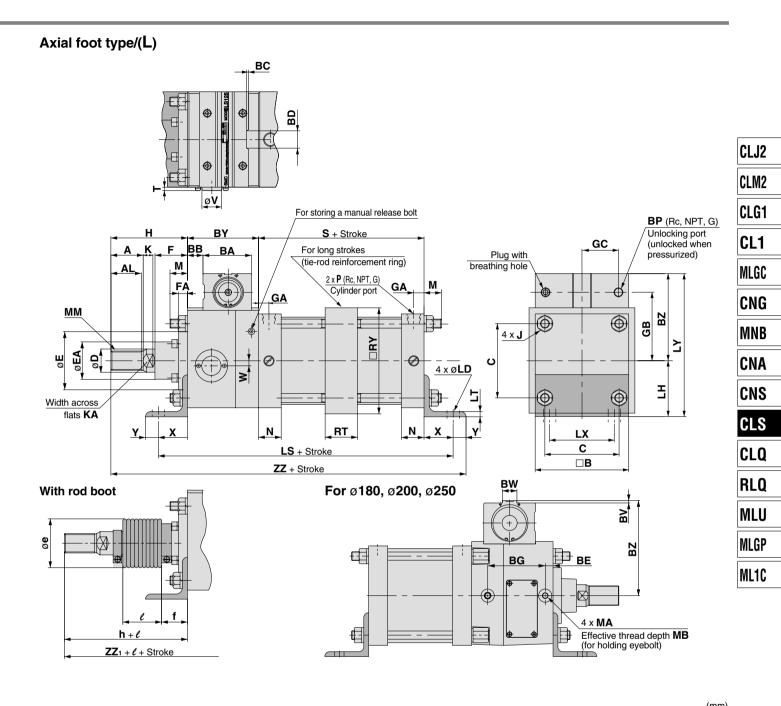
Series CLS

Dimensions

Basic type/(B)

(for holding eyebolt)

、


																																()	mm)
Bore size (mm)	Stroke range (mm)	A	AL	в	ва	вв	вс	вD	BE	BG	ΒY	ΒZ	вν	вw	BP	С	D	Е	EA	F	FA	GA	GΒ	GC	Н	J	к	KA	м	ММ	MA	MB	N
125	Up to 1000	50	47	145	75	18	-	—	—	—	110	136	-	—	1/4	115	36	90	59	43	14	16	107	58	110	M14 x 1.5	15	31	27	M30 x 1.5	_	—	35
140	Up to 1000	50	47	161	78	18	3	30	—	—	110	146	-	—	1/4	128	36	90	59	43	14	16	114	64	110	M14 x 1.5	15	31	27	M30 x 1.5	—	—	35
160	Up to 1200	56	53	182	95	23	5	46	—	—	132	169	—	—	1/4	144	40	90	59	43	14	18.5	130	74	120	M16 x 1.5	17	36	30.5	M36 x 1.5	_	—	39
180	Up to 1200	63	60	204	106	36	—	—	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	135	M18 x 1.5	20	41	35	M40 x 1.5	M12 x 1.75	25	39
200	Up to 1200	63	60	226	124	40.5	-	—	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	135	M20 x 1.5	20	46	35	M45 x 1.5	M16 x 2	31	39
250	Up to 1200	71	67	277	152	58	-	-	35	155	237	261.5	6	42	1/2	225	60	140	86	60	20	23	200	117	160	M24 x 1.5	25	56	41.5	M56 x 2	M20 x 2.5	41	49

					(mm)
Bore size (mm)	Ρ	S	т	۷	w	zz
125	1/2	98	5	30	-	345
140	1/2	98	5	30	8	345
160	3/4	106	5	30	9	388.5
180	3/4	111	—	—	—	448
200	3/4	111	—	—	—	468
250	1	141	—	—	—	579.5

With R	od Bo	ot			(mm)
Bore size (mm)	Stroke range (mm)	е	f	h	e	ZZı
125	30 to 1000	75	40	133	0.2 stroke	368
140	30 to 1000	75	40	133	0.2 stroke	368
160	30 to 1200	75	40	141	0.2 stroke	409.5
180	30 to 1200	85	45	153	0.2 stroke	466
200	30 to 1200	90	45	153	0.2 stroke	486
250	30 to 1200	105	55	176	0.17 stroke	595.5

With A	uto Sv	vitc	h	(mm)
Bore size (mm)	Stroke range (mm)	s	Without rod boot	With rod boot ZZ 1
125	Up to 1000	98	345	368
140	Up to 1000	98	345	368
160	Up to 1200	106	388.5	409.5
180	Up to 1200	115	452	470
200	Up to 998	120	477	495

																																			(r	nm)
Bore size (mm)	Stroke range (mm)	Long stroke range (mm)		AL	в	BA	BB	вс	вD	BE	BG	BY	ΒZ	вv	BW	BP	С	D	Е	EA	F	FA	GA	GB	GC	Н	J	к	KA	LD	LH	LS	LT	LX	LY	м
125	Up to 1400	1401 to 1600	50	47	145	75	18	-	-	—	Ι	110	136	—	Ι	1/4	115	36	90	59	43	14	16	107	58	110	M14 x 1.5	15	31	19	85	298	8	100	221	27
140	Up to 1400	1401 to 1600	50	47	161	78	18	3	30	—	—	110	146	—	—	1/4	128	36	90	59	43	14	16	114	64	110	M14 x 1.5	15	31	19	100	298	9	112	246	27
160	Up to 1400	1401 to 1600	56	53	182	95	23	5	46	—	—	132	169	—	—	1/4	144	40	90	59	43	14	18.5	130	74	120	M16 x 1.5	17	36	19	106	338	9	118	275	30.5
180	Up to 1800	1801 to 2000	63	60	204	106	36	—	—	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	135	M18 x 1.5	20	41	24	125	398	10	132	320	35
200	Up to 1800	1801 to 2000	63	60	226	124	40.5	—	-	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	135	M20 x 1.5	20	46	24	132	418	10	150	348	35
250	Up to 2000	2001 to 2400	71	67	277	152	58	—	—	35	155	237	261.5	6	42	1/2	225	60	140	86	60	20	23	200	117	160	M24 x 1.5	25	56	29	160	538	12	180	421.5	41.5

Bore size

125

140

(mm)

With Rod Boot

Stroke range (mm)

30 to 1400

	(mm)	With A	uto Sv	/itch	1		(mm)
h	l	ZZ1	Bore size (mm)	Stroke range (mm)	S	LS	Without rod boot ZZ	With rod boot ZZ 1
133	0.2 stroke	406	125	Up to 1400	98	298	383	406
133	0.2 stroke	416	140	Up to 1400	98	298	393	416
141	0.2 stroke	454	160	Up to 1400	106	338	433	454
153	0.2 stroke	521	180	Up to 1500	115	402	507	525
153	0.2 stroke	541	200	Up to 998	120	427	532	550
176	0.17 stroke	674						

D -□	ZZ 1	ZZ
	406	383
-X□	416	393
1.42.24.54	454	433
Individual	525	507
-70	550	532

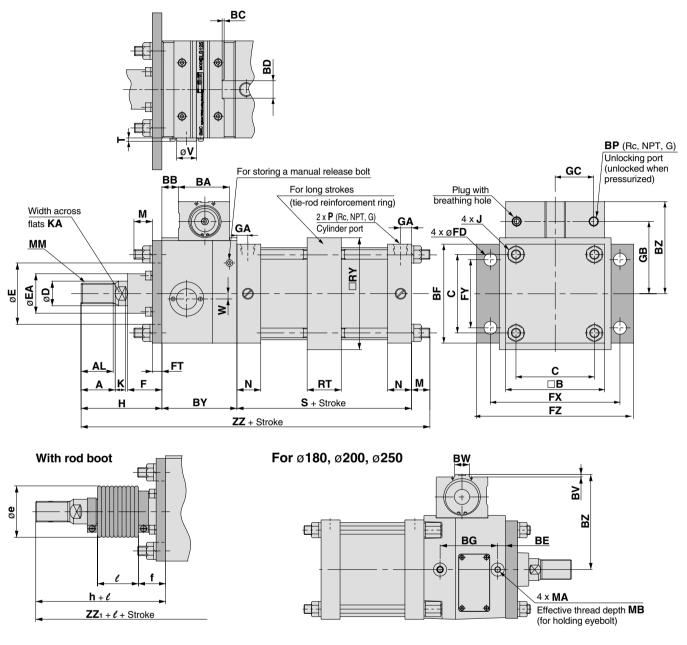
791

160	30 to 1400	75	40	141	0.2 stroke	454
180	30 to 1800	85	45	153	0.2 stroke	521
200	30 to 1800	90	45	153	0.2 stroke	541
250	30 to 2000	105	55	176	0.17 stroke	674
S SN	С					

	(mm														
Bore size (mm)	ММ	МА	ΜВ	Ν	Ρ	RT	RY	S	т	v	w	x	Y	zz	
125	M30 x 1.5	_	—	35	1/2	36	164	98	5	30	—	45	20	383	
140	M30 x 1.5	—	—	35	1/2	36	184	98	5	30	8	45	30	393	
160	M36 x 1.5	—	—	39	3/4	45	204	106	5	30	9	50	25	433	
180	M40 x 1.5	M12 x 1.75	25	39	3/4	45	228	111	_	—	—	60	30	503	
200	M45 x 1.5	M16 x 2	31	39	3/4	45	257	111	—	—	—	60	30	523	
250	M56 x 2	M20 x 2.5	41	49	1	55	325	141	—	—	—	80	40	658	

f h

30 to 1400 75 40 133 0.2 stroke 41


е

75 40

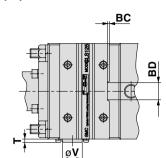
Series CLS

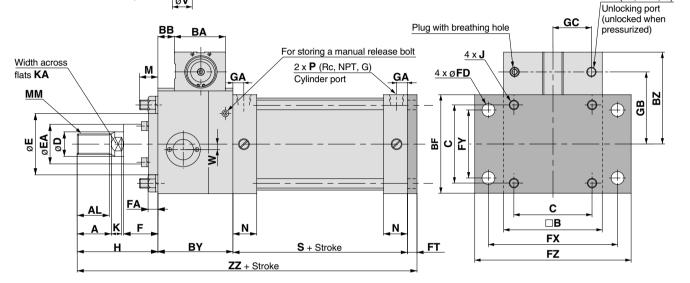
Dimensions

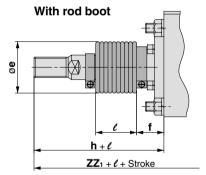
Rod flange type/(F)

(mm)

Bore size (mm)	Stroke range (mm)	Long stroke range (mm)	A	AL	в	ва	вв	вС	BD	BE	ВG	BF	вγ	ΒZ	вν	вw	ВΡ	С	D	Е	EA	F	FD	FT	FX	FY	FZ	GA	GВ	GC	н	J	к	KA	м
125	Up to 1400	1401 to 1600	50	47	145	75	18	—	—	—	—	145	110	136	—	—	1/4	115	36	90	59	43	19	14	190	100	230	16	107	58	110	M14 x 1.5	15	31	19
140	Up to 1400	1401 to 1600	50	47	161	78	18	3	30	—	—	160	110	146	—	—	1/4	128	36	90	59	43	19	20	212	112	255	16	114	64	110	M14 x 1.5	15	31	19
160	Up to 1400	1401 to 1600	56	53	182	95	23	5	46	—	—	180	132	169	—	—	1/4	144	40	90	59	43	19	20	236	118	275	18.5	130	74	120	M16 x 1.5	17	36	22
180	Up to 1800	1801 to 2000	63	60	204	106	36	_		16	118	200	167	195	5	30	3/8	162	45	115	70	48	24	25	265	132	320	18.5	149	86	135	M18 x 1.5	20	41	26
200	Up to 1800	1801 to 2000	63	60	226	124	40.5	—	—	21	131	225	187	216	5.5	34	3/8	182	50	115	74	48	24	25	280	150	335	18.5	165	97	135	M20 x 1.5	20	46	26
250	Up to 2000	2001 to 2400	71	67	277	152	58	—	—	35	155	275	237	261.5	6	42	1/2	225	60	140	86	60	29	30	355	180	420	23	200	117	160	M24 x 1.5	25	56	30


SMC


	(mm)														
Bore size (mm)	ММ	МА	ΜВ	Ν	Ρ	RT	RY	s	т	v	w	zz			
125	M30 x 1.5	—	—	35	1/2	36	164	98	5	30	—	337			
140	M30 x 1.5	—	—	35	1/2	36	184	98	5	30	8	337			
160	M36 x 1.5	—	—	39	3/4	45	204	106	5	30	9	380			
180	M40 x 1.5	M12 x 1.75	25	39	3/4	45	228	111	—	—	—	439			
200	M45 x 1.5	M16 x 2	31	39	3/4	45	257	111	—	-	-	459			
250	M56 x 2	M20 x 2.5	41	49	1	55	325	141	_	—	—	568			


With R	With Rod Boot (mm													
Bore size (mm)	Stroke range (mm)	е	f	h	l	ZZ₁								
125	30 to 1400	75	40	133	0.2 stroke	360								
140	30 to 1400	75	40	133	0.2 stroke	360								
160	30 to 1400	75	40	141	0.2 stroke	401								
180	30 to 1800	85	45	153	0.2 stroke	457								
200	30 to 1800	90	45	153	0.2 stroke	477								
250	30 to 2000	105	55	176	0.17 stroke	584								

With Auto Switch (mm												
Bore size (mm)	Stroke range	s		With rod boot								
((((((((((((((((((((((((((((((((((((((((mm)		ZZ	ZZ1								
125	Up to 1400	98	337	360								
140	Up to 1400	98	337	360								
160	Up to 1400	106	380	401								
180	Up to 1500	115	443	461								
200	Up to 998	120	468	486								

Bore size

(mm) 125

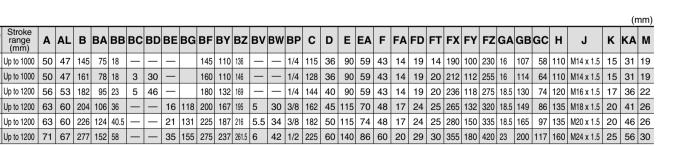
140

160

180

200

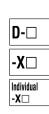
250


For ø180, ø200, ø250	BW
	4 x MA Effective thread depth MB (for holding eyebolt)

CLM2
CLG1
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP

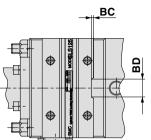
ML1C

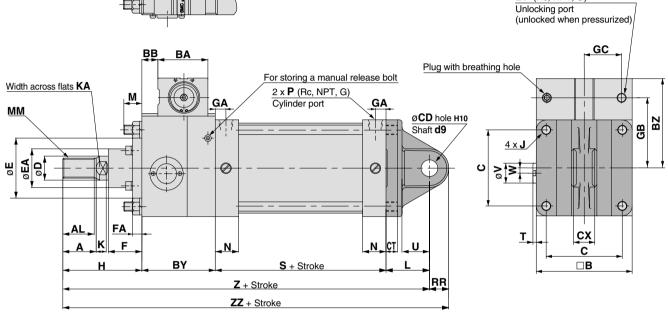
CLJ2

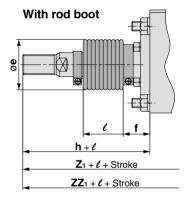

BP (Rc, NPT, G)

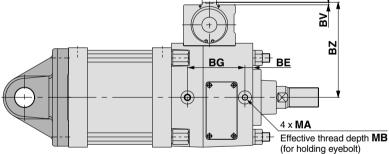
	(mm)														
Bore size (mm)	ММ	МА	ΜВ	N	Ρ	s	т	v	w	zz					
125	M30 x 1.5		—	35	1/2	98	5	30	—	332					
140	M30 x 1.5		—	35	1/2	98	5	30	8	338					
160	M36 x 1.5		—	39	3/4	106	5	30	9	378					
180	M40 x 1.5	M12 x 1.75	25	39	3/4	111	—	—	—	438					
200	M45 x 1.5	M16 x 2	31	39	3/4	111	—	—	—	458					
250	M56 x 2	M20 x 2.5	41	49	1	141	—	—	_	568					

With R	With Rod Boot (mm														
Bore size (mm)	Stroke range (mm)	е	f	h	l	ZZ₁									
125	30 to 1000	75	40	133	0.2 stroke	355									
140	30 to 1000	75	40	133	0.2 stroke	361									
160	30 to 1200	75	40	141	0.2 stroke	399									
180	30 to 1200	85	45	153	0.2 stroke	456									
200	30 to 1200	90	45	153	0.2 stroke	476									
250	30 to 1200	105	55	176	0.17 stroke	584									


With Auto Switch (mm)													
Bore size (mm)	Stroke range (mm)	s	Without rod boot ZZ	With rod boot ZZ 1									
125	Up to 1000	98	332	355									
140	Up to 1000	98	338	361									
160	Up to 1200	106	378	399									
180	Up to 1200	115	442	460									
200	Up to 998	120	467	485									




Series CLS


Dimensions

Single clevis type/(C)

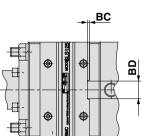
BW

BP (Rc, NPT, G)

(mm) Stroke Bore size B BA BB BC BD BE BG BY BZ BV BW BP C CDH10 CT СХ E EA F FA GA GB GC H K KA A AL D J LM range (mm) (mm)
 1/4
 115
 25^{+0.084}

 1/4
 128
 28^{+0.084}
 $32^{-0.1}_{-0.3}$ $36^{-0.1}_{-0.3}$ 125 Up to 1000 50 47 145 75 18 110 136 17 36 90 59 43 14 16 107 58 110 M14 x 1.5 15 31 65 19 36 140 Up to 1000 50 47 161 78 18 3 30 110 146 17 90 59 43 14 16 114 64 110 M14 x 1.5 15 31 75 19 144 32^{+0.100} $\begin{array}{ccc} 20 & 40 \begin{array}{c} -0.1 \\ -0.3 \end{array} \\ 23 & 50 \begin{array}{c} -0.1 \\ -0.3 \end{array} \end{array}$ 160 Up to 1200 56 53 182 95 23 5 46 132 169 1/4 40 90 59 43 14 18.5 130 74 120 M16 x 1.5 17 36 80 22 ____ 30 3/8 162 40^{+0.100} 180 Up to 1200 63 60 204 106 36 16 118 167 195 5 45 115 70 48 17 18.5 149 86 135 M18 x 1.5 20 41 90 26
 131
 187
 216
 5.5
 34
 3/8
 182
 40^{+0.100}
 25
 50^{-0.1}
 50
 115
 74
 48
 17
 18.5
 165
 97
 135
 M20 x 1.5

 155
 237
 261.5
 6
 42
 1/2
 225
 50^{+0.100}
 30
 63^{-0.1}
 60
 140
 86
 60
 20
 23
 200
 117
 160
 M24 x 1.5
200 Up to 1200 63 60 226 124 40.5 21 20 46 90 26 250 Up to 1200 277 152 58 35 155 237 261.5 6 25 56 110 30 71 67


	(mm														
Bore size (mm)	ММ	МА	MB	N	Ρ	RR	s	т	U	v	w	z	zz		
125	M30 x 1.5	—	—	35	1/2	29	98	5	35	30	—	383	412		
140	M30 x 1.5	—	—	35	1/2	32	98	5	40	30	8	393	425		
160	M36 x 1.5	_	—	39	3/4	36	106	5	45	30	9	438	474		
180	M40 x 1.5	M12 x 1.75	25	39	3/4	44	111	—	50	—	_	503	547		
200	M45 x 1.5	M16 x 2	31	39	3/4	44	111	—	50	—	_	523	567		
250	M56 x 2	M20 x 2.5	41	49	1	55	141	—	65	—	—	648	703		


With R	od Bo	ot				(1	mm)
Bore size (mm)	Stroke range (mm)	е	f	h	l	Z 1	ZZ₁
125	30 to 1000	75	40	133	0.2 stroke	406	435
140	30 to 1000	75	40	133	0.2 stroke	416	448
160	30 to 1200	75	40	141	0.2 stroke	459	495
180	30 to 1200	85	45	153	0.2 stroke	521	565
200	30 to 1200	90	45	153	0.2 stroke	541	585
250	30 to 1200	105	55	176	0.17 stroke	664	719

With A	uto Sv	vitc	h		(1	mm)
Bore size (mm)	Stroke range (mm)	s	rod	hout boot		boot
125	Up to 1000	98	383		406	435
140	Up to 1000	98	393	425	416	448
160	Up to 1200	106	438	474	459	495
180	Up to 1200	115	507	551	525	569
200	Up to 998	120	532	576	550	594

 $Z_1 + \ell + Stroke$ $ZZ_1 + \ell + Stroke$

h + l

Bore size (mm)	Stroke range (mm)	A	AL	в	ва	вв	вс	BD	BE	BG	BY	ΒZ	вv	BW	BP	С	CDH10	ст	сх	cz	D	Е	EA	F	FA	GA	GB	GC	н	J	к	KA	L
125	Up to 1000	50	47	145	75	18	-	—	—		110	136	_	—	1/4	115	25 ^{+0.084} ₀	17	32+0.3	64_0_	36	90	59	43	14	16	107	58	110	M14 x 1.5	15	31	65
140	Up to 1000	50	47	161	78	18	3	30	—		110	146	_	—	1/4	128	28 +0.084 0	17	36 +0.3	72_0.2	36	90	59	43	14	16	114	64	110	M14 x 1.5	15	31	75
160	Up to 1200	56	53	182	95	23	5	46	—		132	169	_	_	1/4	144	32 +0.100	20	$40^{+0.3}_{+0.1}$	80_0.2	40	90	59	43	14	18.5	130	74	120	M16 x 1.5	17	36	80
180	Up to 1200	63	60	204	106	36	-	—	16	118	167	195	5	30	3/8	162	40 +0.100	23	50 +0.3 +0.1	$100^{-0.1}_{-0.3}$	45	115	70	48	17	18.5	149	86	135	M18 x 1.5	20	41	90
200	Up to 1200	63	60	226	124	40.5	-	—	21	131	187	216	5.5	34	3/8	182	40 +0.100	25	50 +0.3 +0.1	$100^{-0.1}_{-0.3}$	50	115	74	48	17	18.5	165	97	135	M20 x 1.5	20	46	90
250	Up to 1200	71	67	277	152	58	—	—	35	155	237	261.5	6	42	1/2	225	50 ^{+0.100} ₀	30	63 ^{+0.3} _{+0.1}	$126^{-0.1}_{-0.3}$	60	140	86	60	20	23	200	117	160	M24 x 1.5	25	56	110

													(r	nm)
Bore size (mm)	М	МА	ΜВ	ММ	N	Ρ	RR	S	т	U	۷	w	z	zz
125	19	—	—	M30 x 1.5	35	1/2	29	98	5	35	30	_	383	412
140	19	—	—	M30 x 1.5	35	1/2	32	98	5	40	30	8	393	425
160	22	—	—	M36 x 1.5	39	3/4	36	106	5	45	30	9	438	474
180	26	M12 x 1.75	25	M40 x 1.5	39	3/4	44	111	—	50	—	—	503	547
200	26	M16 x 2	31	M45 x 1.5	39	3/4	44	111	_	50	—	—	523	567
250	30	M20 x 2.5	41	M56 x 2	49	1	55	141	—	65	—	—	648	703

With R	od Bo	ot				(1	mm)
Bore size (mm)	Stroke range (mm)	е	f	h	l	Z 1	ZZ1
125	30 to 1000	75	40	133	0.2 stroke	406	435
140	30 to 1000	75	40	133	0.2 stroke	416	448
160	30 to 1200	75	40	141	0.2 stroke	459	495
180	30 to 1200	85	45	153	0.2 stroke	521	565
200	30 to 1200	90	45	153	0.2 stroke	541	585
250	30 to 1200	105	55	176	0.17 stroke	664	719

With A	uto Sw	/itc	h		(mm)
Bore size	Stroke range	s	rod	nout boot	rod	
(mm)	(mm̃)		Ζ	ZZ	Z 1	ZZ1
125	Up to 1000	98	383	412	406	435
140	Up to 1000	98	393	425	416	448
160	Up to 1200	106	438	474	459	495
180	Up to 1200	115	507	551	525	569
200	Up to 998	120	532	576	550	594

4 × MA

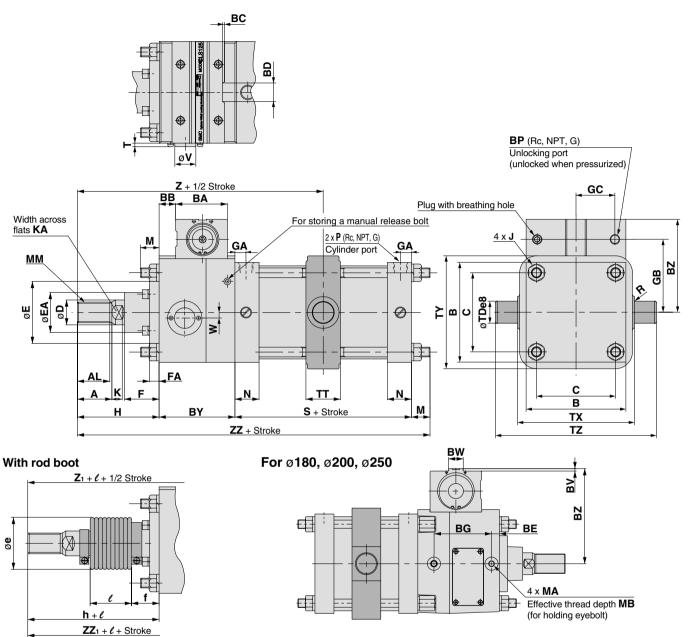
⊫‡⊐-

Effective thread depth MB

(for holding eyebolt)

D-□ -X□ Individual **-X**□

CLJ2



(mm)

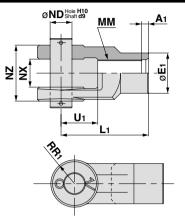
Series CLS

Dimensions

Center trunnion type/(T)

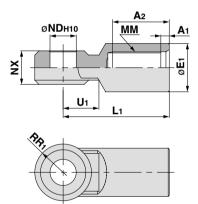
																																	(r	mm)
Bore size (mm)	Stroke range (mm)	A	AL	в	ВΑ	вв	вс	ВD	BE	ВG	BY	ΒZ	вv	вw	BP	С	D	Е	EA	F	FA	GA	GВ	GC	н	J	к	KA	М	ММ	МА	ΜВ	N	Р
125	25 to 1000	50	47	145	75	18	—	—	—		110	136	—	—	1/4	115	36	90	59	43	14	16	107	58	110	M14 x 1.5	15	31	19	M30 x 1.5	_	—	35	1/2
140	30 to 1000	50	47	161	78	18	3	30	—		110	146	—	—	1/4	128	36	90	59	43	14	16	114	64	110	M14 x 1.5	15	31	19	M30 x 1.5	—	—	35	1/2
160	35 to 1200	56	53	182	95	23	5	46	—		132	169	—	—	1/4	144	40	90	59	43	14	18.5	130	74	120	M16 x 1.5	17	36	22	M36 x 1.5	_	—	39	3/4
180	30 to 1200	63	60	204	106	36	—	—	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	135	M18 x 1.5	20	41	26	M40 x 1.5	M12 x 1.75	25	39	3/4
200	30 to 1200	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	135	M20 x 1.5	20	46	26	M45 x 1.5	M16 x 2	31	39	3/4
250	30 to 1200	71	67	277	152	58	—	—	35	155	237	261.5	6	42	1/2	225	60	140	86	60	20	23	200	117	160	M24 x 1.5	25	56	30	M56 x 2	M20 x 2.5	41	49	1

											1)	mm)
Bore size (mm)	R	s	т	TDe8	тт	тх	ТΥ	ΤZ	v	w	z	zz
125	1	98	5	32 ^{-0.050}	50	170	164	234	30	-	269	337
140	1.5	98	5	36 ^{-0.050} -0.089	55	190	184	262	30	8	269	337
160	1.5	106	5	40_0.089	60	212	204	292	30	9	305	380
180	2	111	—	$45_{-0.089}^{-0.050}$	59	236	228	326	—	—	357.5	439
200	2	111	—	$45_{-0.089}^{-0.050}$	59	265	257	355	—	—	377.5	459
250	3	141	—	56 ^{-0.060} -0.106	69	335	325	447	—	—	467.5	568

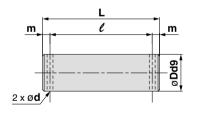

With R	od Bo	ot				(1	mm)
Bore size (mm)	Stroke range (mm)	е	f	h	e	Z₁	ZZ1
125	30 to 1000	75	40	133	0.2 stroke	292	360
140	30 to 1000	75	40	133	0.2 stroke	292	360
160	30 to 1200	75	40	141	0.2 stroke	326	401
180	30 to 1200	85	45	153	0.2 stroke	375.5	457
200	30 to 1200	90	45	153	0.2 stroke	395.5	477
250	30 to 1200	105	55	176	0.17 stroke	483.5	584

SMC

With A	uto Sv	vitc	h		(1	mm)
Bore size (mm)	Stroke range (mm)	s		hout boot ZZ		
125	Up to 1000	98	269	337	292	360
140	Up to 1000	98	269	337	292	360
160	Up to 1200	106	305	380	326	401
180	Up to 1200	115	359.5	443	377.5	461
200	Up to 998	120	382	468	400	486


Series CLS **Accessory Dimensions 1**

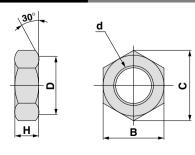
Y Type Double Knuckle Joint


Model	Applicable bore size (mm)	A 1	E1	L1	мм	NDH10	NX	NZ	RR1	U1	CLJ
Y-12	125	8	46	100	M30 x 1.5	25 ^{+0.084}	32 ^{+0.3}	64-0.1	27	42	CLM
Y-14	140	8	48	105	M30 x 1.5	28 ^{+0.084}	36 ^{+0.3}	72 ^{-0.1} -0.3	30	47	ULIVI
Y-16	160	8	55	110	M36 x 1.5	32 ^{+0.1}	$40^{+0.3}_{+0.1}$	80 ^{-0.1}	34	46	CLG
Y-18	180	8	70	125	M40 x 1.5	40 ^{+0.1}	$50^{+0.3}_{+0.1}$	100 ^{-0.1}	42.5	54	ULU
Y-20	200	8	70	125	M45 x 1.5	40 ^{+0.1}	50 ^{+0.3}	100 ^{-0.1}	42.5	54	CL1
Y-25	250	9	86	160	M56 x 2	50 ^{+0.1}	63 ^{+0.3}	126 ^{-0.1}	53	81	ULI

I Type Single Knuckle Joint

Material: Cast	t iron									(mm)
Model	Applicable bore size (mm)	A 1	A 2	E1	L1	ММ	NDH10	NX	RR1	U1
I-12	125	8	54	46	100	M30 x 1.5	25 ^{+0.084}	32 ^{-0.1}	27	33
I-14	140	8	54	48	105	M30 x 1.5	28 ^{+0.084}	36 ^{-0.1} -0.3	30	39
I-16	160	8	60	55	110	M36 x 1.5	32 ^{+0.1}	40 ^{-0.1} -0.3	34	39
I-18	180	8	67	70	125	M40 x 1.5	40 ^{+0.1}	50 ^{-0.1} -0.3	42.5	44
I-20	200	8	67	70	125	M45 x 1.5	40 ^{+0.1}	50 ^{-0.1} -0.3	42.5	44
I-25	250	9	75.5	86	160	M56 x 2	50 ^{+0.1}	63 ^{-0.1}	53	66

Clevis Pin/Knuckle Pin



Material: Carbon steel

Material: Carl	bon steel						(mm)
Model	Applicable bore size (mm)	d (drill through)	Dd9	L	l	m	Cotter pin
IY-12	125	4	25 ^{-0.065}	79.5	69.5	5	Ø4 x 40ℓ
IY-14	140	4	28 ^{-0.065}	86.5	76.5	5	Ø4 x 40ℓ
IY-16	160	4	32 ^{-0.080}	94.5	84.5	5	Ø4 x 40ℓ
IY-18	180, 200	4	40 ^{-0.080}	115	105	5	Ø4 x 55ℓ
IY-25	250	5	50 ^{-0.080} -0.142	144	132	6	Ø5 x 65ℓ

* Cotter pins (2 pcs.) are included.

Rod End Nut

Material: Rolled steel (n								
Model	Applicable bore size (mm)	d	н	В	С	D		
NT-12	125, 140	M30 x 1.5	18	46	53.1	44		
NT-16	160	M36 x 1.5	21	55	63.5	53		
NT-18	180	M40 x 1.5	23	60	69.3	57		
NT-20	200	M45 x 1.5	27	70	80.8	67		
NT-25	250	M56 x 2	34	85	98.1	82		

D- □
-X□
ا م بالبالية ا
Individual
-X□

CNG

MNB

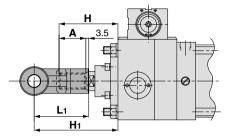
CNA

CNS

CLS

CLQ

RLQ


MLU

MLGP

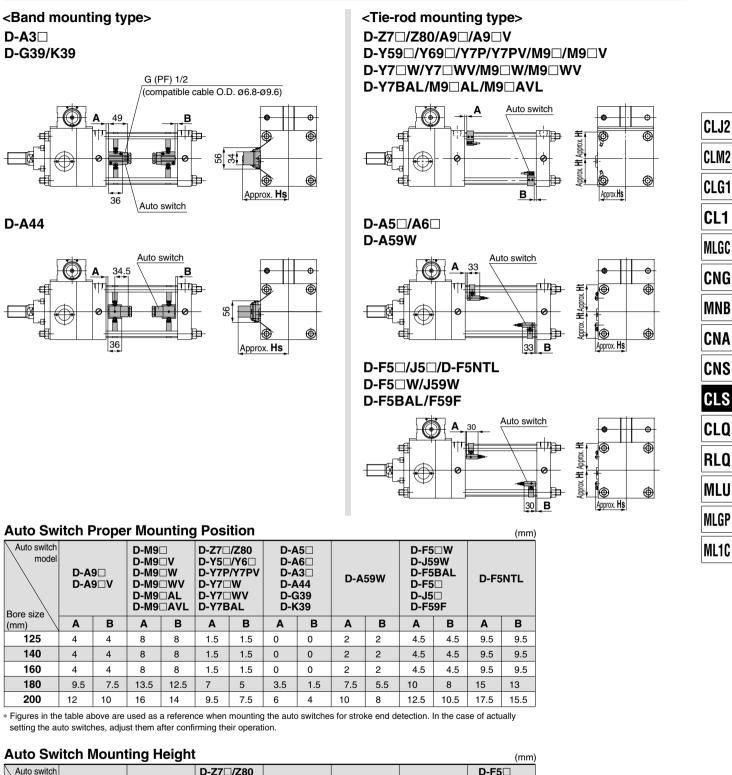
ML1C

Series CLS **Accessory Dimensions 2**

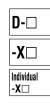
Single/Double Knuckle Joint Mounting

						(mm)	
Symbol	н	A	L1	H1	Applicable knuckle joint part nos.		
Bore size (mm)				•••	I type single knuckle	Y type double knuckle	
125	110	50	100	156.5	I-12	Y-12	
140	110	50	105	161.5	I-14	Y-14	
160	120	56	110	170.5	I-16	Y-16	
180	135	63	125	193.5	I-18	Y-18	
200	135	63	125	193.5	I-20	Y-20	
250	160	71	160	245.5	I-25	Y-25	

A, H dimensions when single/ double knuckle joint and rod end nut are mounted together.


	- J				
Bore size (mm)	A	Н			
125	65	125			
140	65	125			
160	76	140			
180	83	155			
200	88	160			
250	106	195			

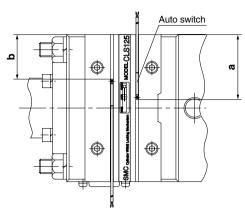
* Single knuckle joint and double knuckle joint should be used separately. (Fasten by screwing completely into the rod end threads.)


* When using a single/double knuckle joint together with a rod end nut, the A and H dimensions should be extended.

(For extension of A and H dimensions, refer to the table above and specify with "Simple Specials -XA0" (page 1836).)

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto switch model Bore size	D-A9 D-A9 U-M9 D-M9 W D-M9 AL		D-M9	D-M9□V D-M9□WV D-M9□AVL D-M9□AVL		/Z80]/Y6] V]W]WV 3AL	D-A3□ D-G39 D-K39	D-A44	D-A D-A D-A		D-F5 D-J5 D-F5 D-J5 D-F5 D-F5 D-F5	□ 9W BAL 9F
(mm)	Hs	Ht	Hs	Ht	Hs	Ht	Hs	Hs	Hs	Ht	Hs	Ht
125	69	69.5	71.5	69.5	69	69.5	116	126	75.5	69.5	74.5	70
140	76	76	77.5	76	76	76	124	134	81	76.5	80	76.5
160	85	85	86	85	85	85	134.5	144.5	89	87.5	88	87.5
180	95	95	95.5	95	95	95	144	154	97	97.5	96	97.5
200	106	106	106	106	106	106	154	164	107	108	107.5	108


Minimum Stroke for Auto Switch Mounting

						Quarter i		o. of auto switches (mm)	
Auto switch model	sv	No. of auto vitches mounted	Mounting brackets other than center trunnion	ø125	ø140	Center trunnion type ø160	ø 180	ø 200	
		s. (Different surfaces, ame surface), 1 pc.	15	100	105	0100	110	5200	
D-A9 □		"n" pcs.	$15 + 40 \frac{(n-2)}{2}$	$100 + 40 \frac{(n-4)}{2}$	$105 + 40 \frac{(n-4)}{2}$		$110 + 40 \frac{(n-4)}{2}$		
	11 pos.		(n = 2, 4, 6, 8)	(n = 4, 8, 12, 16…)	(n = 4, 8, 12, 16…)		(n = 4, 8, 12, 16…)		
	2 pcs. (Different surfaces, Same surface), 1 pc.		10	75	80 85				
D-A9⊡V		"n" pcs.	_	$75 + 30 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)	-		85 + 30 <u>(n-4)</u> (n = 4, 8, 12, 16…)		
		s. (Different surfaces, ame surface), 1 pc.	15	105	110		115		
D-M9□ D-M9□W		"n" pcs.		$105 + 40 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)			$115 + 40 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)		
		s. (Different surfaces, ame surface), 1 pc.	10	80	85		90		
D-M9⊡V D-M9⊡WV		"n" pcs.	-	$80 + 30 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)	-		$90 + 30 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)		
		s. (Different surfaces, ame surface), 1 pc.	20	115		1.	20		
D-M9□AL		"n" pcs.	-	$115 + 40 \frac{(n-2)}{2}$ (n = 2, 4, 6, 8)		120 + 4 (n = 2, 4	40 <u>(n-2)</u> , 6, 8…)		
		s. (Different surfaces, ame surface), 1 pc.	15	90			95		
D-M9□AVL	/L "n" pcs.		2	$90 + 30 \frac{(n-2)}{2}$ (n = 2, 4, 6, 8)					
D-A5□/A6□ D-A59W D-F5□/J5□		s. (Different surfaces, ame surface), 1 pc.	25	125	1	135 15		50	
D-F5□W D-J59W D-F5BAL D-F59F	("n" pcs. Same surface)	2	$125 + 55 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)	2			150 + 55 <u>(n-4)</u> = 4, 8, 12, 16…)	
		s. (Different surfaces, ame surface), 1 pc.	35	145	1	55	1	70	
D-F5NTL		"n" pcs.	$35 + 55 \frac{(n-2)}{2}$	145 + 55 <u>(n-4)</u>	$155 + 55 \frac{(n-4)}{2}$ 170 +			$55 \frac{(n-4)}{2}$	
	Ì	Same surface) Different surfaces	(n = 2, 4, 6, 8…) 35	(n = 4, 8, 12, 16…)	(n = 4, 8,	12, 16…)	(n = 4, 8,	12, 16…)	
	2 pcs.	Same surface	100		1.			150	
D-A3⊡ D-G39	pcs.	Different surfaces	35 + 30 (n–2)		110 + 3 (n = 2, 4	, 6, 8…)		150 + 30 (n–2) (n = 2, 4, 6, 8···)	
D-K39	"u	Same surface	100 + 100 (n–2)		110 + 10 (n = 2, 4	, 6, 8…)		150 + 100 (n–2) (n = 2, 4, 6, 8…)	
	pcs.	1 pc. Different surfaces	15 35		1.			150	
	2 pc	Same surface	55		1.	10		150	
D-A44	pcs.	Different surfaces	35 + 30 (n-2)		110 + 3 (n = 2, 4			150 + 30 (n–2) (n = 2, 4, 6, 8…)	
	1 "u"	Same surface	55 + 55 (n–2)		110 + 5 (n = 2, 4	. ,		150 + 50 (n–2) (n = 2, 4, 6, 8…)	
	_	1 pc.	15		1	10		150	
D-Z7□ D-Z80		s. (Different surfaces, ame surface), 1 pc.	15	105	110		115		
D-Y59□ D-Y7P D-Y7□W		"n" pcs.	$15 + 40 \frac{(n-2)}{2}$	$105 + 40 \frac{(n-4)}{2}$	$110 + 40 \frac{(n-4)}{2}$		$115 + 40 \frac{(n-4)}{2}$		
		s. (Different surfaces, ame surface), 1 pc.	(n = 2, 4, 6, 8…) 10	(n = 4, 8, 12, 16…) 90	(n = 4, 8, 12, 16…) 95		(n = 4, 8, 12, 16…) 100		
D-Y69□ D-Y7PV D-Y7□WV		"n" pcs.	_	$90 + 30 \frac{(n-4)}{2}$	_		$100 + 30 \frac{(n-4)}{2}$		
		-	(n = 2, 4, 6, 8···)	(n = 4, 8, 12, 16…)	(n = 4, 8, 12, 16⋯)		(n = 4, 8, 12, 16…)		
		s. (Different surfaces, ame surface), 1 pc.	20	115	120	125	1:	30	
D-Y7BAL		"n" pcs.	-	-	$120 + 45 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)	$125 + 45 \frac{(n-4)}{2}$ (n = 4, 8, 12, 16)	130 + 4 (n = 4, 8,	2	

Proper Mounting Positions for Lock Unit Auto Switches

The operating status (at the unlocked end) of the lock unit (brake piston) can be detected by a signal from the auto switch, which is mounted on the brake cylinder of the CLS series.

(mm) Auto switch D-M9N D-A90 model D-M9P D-A93 D-M9B Bore size b а b а 125 62 42 58 46 140 70.5 50.5 66.5 54.5 160 70.5 50.5 66.5 54.5 180 80.5 60.5 76.5 64.5 200 86 66 82 70 250 102 82 98 86

* Be sure to confirm operation after mounting.

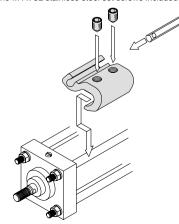
Operating Range

					(mm)			
Auto switch model	Bore size							
Auto Switch model	125	140	160	180	200			
D-A9□/A9□V	12	12.5	11.5	12	12.5			
D-M9□/M9□V D-M□W/M9□WV D-M9□AL/M9□AVL	7	6.5	6.5	7	7			
D-Z7□/Z80	14	14.5	13	14	14.5			
D-A3□/A44 D-A5□/A6□	10	10	10	10	10			
D-A59W	17	17	17	17	17			
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BAL	12	13	7	7.5	8			
D-F5□/J5□/F59F D-F5□W/J59W D-F5BAL/F5NTL	5	5	5.5	6	6			
D-G39/K39	11	11	10	10	10			

 \ast Since this is a guideline including hysteresis, not meant to be guaranteed (assuming approximately ±30% dispersion).

There may be the case to change substantially depending on an ambient environment.

Auto Switch Mounting Bracket Part No.


						MNB
Auto switch model		CNA				
	ø 125	ø140	ø 160	ø 180	ø 200	CNA
D-A9□/A9□V D-M9□/M9□V D-M9□W/M9□WV	BS5-125	BS5-125	BS5-160	BS5-180	BS5-200	CNS
D-M9 AL/M9 AVL						CLS
D-A5□/A6□						
D-A59W D-F5□/J5□	BT-12	BT-12	BT-16	BT-18A	BT-20	CLQ
D-F5⊡W/J59W D-F5BAL D-F59F/F5NTL			21.10	21.101	2.20	RLQ
D-A3□/A44 D-G39/K39	BS1-125	BS1-140	BS1-160	BS1-180	BS1-200	MLU
D-Z7□/Z80 D-Y5□/Y6□						MLGP
D-Y7P/Y7PV D-Y7□W/Y7□WV	BS4-125	BS4-125	BS4-160	BS4-180	BS4-200	ML1C
D-Y7BAL						

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket separately, since it is not included.) BBA1: For D-A5/A6/F5/J5 types

D-F5BAL auto switch is set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, BBA1 is attached. Note 1) Refer to page 1821 for the details of BBA1.

Note 2) When using D-M9□A(V)L/Y7BAL, do not use the steel set screws which is included with the auto switch mounting brackets above (BS5-□□, BS4-□□). Order a stainless steel screw set (BBA1) separately, and select and use the M4 x 8L stainless steel set screws included in the BBA1.

D-□ -X□ Individual -X□

CLJ2

CLM2

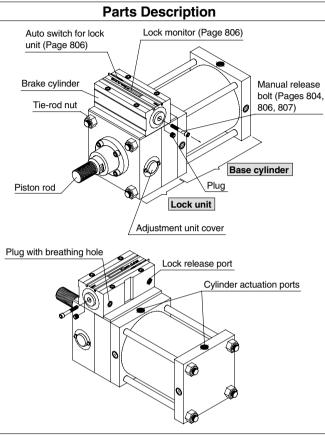
CLG1

CL1

MLGC

CNG

• The above figure shows the mounting example of D-A9 $\Box(V)/M9\Box(V)/M9\BoxW(V)/M9\BoxA(V)L.$



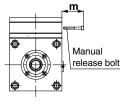
Series CLS

Auto switch type	Model	Electrical entry (Fetching direction)	Features	
	D-A90V	One man at (De me an aliandam)	Without indicator light	
	D-A93V, A96V	Grommet (Perpendicular)		
D	D-Z73, Z76] —	
Reed	D-A53, A56			
	D-A64, A67	Grommet (In-line)		
	D-Z80		Without indicator light	
	D-M9NV, M9PV, M9BV		_	
	D-Y69A, Y69B, Y7PV			
	D-M9NWV, M9PWV, M9BWV	D-M9NWV, M9PWV, M9BWV Grommet (Perpendicular)		
	D-Y7NWV, Y7PWV, Y7BWV		2-color indication	
	D-M9NAVL, M9PAVL, M9BAVL		Water resistant (2-color indicatio	
Solid state	D-F59, F5P, J59		_	
	D-Y59A, Y59B, Y7P			
	D-F59W, F5PW, J59W	Crommet (In line)	2-color indication	
	D-Y7NW, Y7PW, Y7BW	Grommet (In-line)	2-color indication	
	D-F5BAL, Y7BAL		Water resistant (2-color indicatio	
	D-F5NTL		With timer	

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Design of Equipment and Machinery

Warning


1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of the cylinder with brake.

Devise a safe structure by attaching protective covers that prevent direct contact with the human body, or in cases where there is a danger of contact, provide sensors or other devices to perform an emergency stop, etc., before contact occurs.

2. Use a balance circuit, taking cylinder lurching into consideration.

In cases such as an intermediate stop, where a lock is operated at a desired position within the stroke and air pressure is applied from only one side of the cylinder, the piston will lurch at high speed when the lock is released. In such situations, there is a danger of causing human injury by having hands or feet, etc., caught, and also a danger of causing damage to the equipment. In order to prevent this lurching, a balance circuit such as the recommended air pressure circuits (page 805) should be used.

3. When designing equipment and machinery, give consideration to clearance and mounting orientation so that manual release of the lock (using the manual release bolt) will be possible.

* Minii	mum	Clea	rance	for Manual Release (mm)	
_					

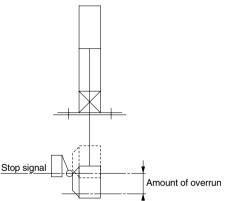
Bore size (mm)	Clearance: m	
125	50	
140 160	60	
180	70	
200	80	
250	90	

Selection

Warning

1. When in a locked condition, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.

Use caution, because an external action such as an impacting load, strong vibration or turning force, may damage the locking mechanism or reduce its life.


2. Consider stopping accuracy and the amount of overrun when an intermediate stop is performed.

Due to the nature of a mechanical lock, there is a momentary lag with respect to the stop signal, and a time delay occurs before stopping. The cylinder stroke resulting from this delay is the overrun amount. The difference between the maximum and minimum overrun amounts is the stopping accuracy.

- Place a limit switch before the desired stopping position, at a distance equal to the overrun amount.
- The limit switch must have a detection length (dog length) of the overrun amount + $\alpha_{\rm -}$
- SMC's auto switches have operating ranges from 8 to 14 mm (depending on the switch model).

When the overrun amount exceeds this range, self-holding of the contact should be performed at the switch load side.

* Refer to page 787 regarding stopping accuracy.

3. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.

To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.

4. Note that stopping accuracy will be influenced by changes in piston speed.

When piston speed changes during the course of the cylinder stroke due to variations in the load or disturbances, etc., the dispersion of stopping positions will increase. Therefore, consideration should be given to establishing a standard speed for the piston just before it reaches the stopping position.

Moreover, the dispersion of stopping positions will increase during the cushioned portion of the stroke and during the accelerating portion of the stroke after the start of operation, due to the large changes in piston speed.

CLJ2

CLM2

CLG1

CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ

RLQ

MLU

MLGP

ML1C

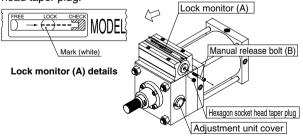
Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Selection

\land Warning

5. Holding force (maximum static load) means the maximum capability of holding a static load that is not accompanied by vibration or impact under the condition that no load is applied. Therefore, it does not refer to a load that cannot be held constantly.

Determine the optimum bore size which meets your application based on the model selection procedure. The procedures for Model Selection, assuming the intermediate stop application (including the emergency stop in operation), are shown on pages 784 and 785. Only when locking the cylinder in a condition where a kinetic energy is not applied, such as in a drop prevention application, the maximum load mass when using the lock should not exceed the upper limit of the load mass, according to the operating pressure, when the maximum speed is V = 100mm/s in Graph 5 through 7 on page 785.


Mounting

\land Warning

1. Be certain to connect the piston rod end to the load with the lock released.

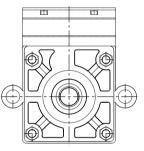
If connected when in the locked condition, turning force or a load greater than the holding force may operate on the piston rod and cause damage to the lock mechanism. The CLS series is equipped with an emergency unlocking mechanism, however, the load should be connected to the piston rod end with the lock in the released condition. This can be accomplished manually or by simply connecting an air line to the unlocking port and supplying air pressure of 0.25 MPa or more.

- 2. The unit is shipped from the factory with the lock in the released condition. Since the lock will not operate in this condition, be sure to put it in the locked condition before operation, following the procedure given below.
 - (1) Remove the manual release bolt (B) using a hexagon wrench. (The manual release bolt can be removed easier by applying air pressure to the lock release port.)
 - (2) Confirm that the white mark on the lock monitor (A) is in the LOCK position.
 - (3) Plug the bolt insertion hole with the included hexagon socket head taper plug.

Manual Release Bolt

Manual Release Bolt Unit: mm		Hexagon Socket Head Taper Plug Size			
Bore size (mm)	S	ize		Bore size (mm)	Hexagon socket head taper plug
125	M6 x 1	.0 x 35 l		125	Rc 1/4
140	M6 x 1	.0 x 40 ℓ		140	NC 1/4
160	M8 x 1.25 x 40 ℓ			160	Rc 3/8
180	M10 x 1	.5 x 50 l		180	Rc 1/2
200	M10 x 1	.5 x 55ℓ		200	NC 1/2
250	M12 x 1.75 x 70 l			250	Rc 3/4

* Use a hexagon socket head cap screw if the included manual release bolt is not available.

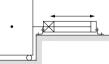

804

Mounting

Warning

- 3. Remove the manual release bolt and attach it to the cylinder cover storage part. (The bolt is necessary at times of maintenance.)
- 4. Mount the cylinder after confirming that the lock is working correctly by applying or releasing air pressure to or from the lock release port. Apply air pressure (more than 0.25 MPa) to unlock the cylinder or release the air pressure (0 MPa) to lock the cylinder.
- 5. The adjustment screw inside the adjustment unit cover is set before shipment. Since any discrepancy in this adjustment can cause cylinder or lock malfunction, etc., never touch the screw.
- 6. When raising the unit, do not insert your hands or fingers.

As this is a heavyweight product, be sure to use caution. Screw holes for installing eyebolts are provided for ø180, ø200 and ø250. (Eyebolts are not included in the unit.)



∧ Caution

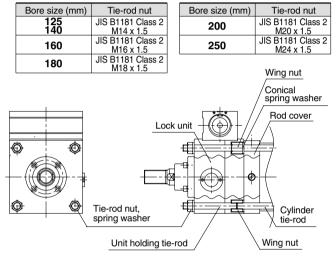
1. Do not apply an offset load to the piston rod.

Particular care should be taken to match the load's center of gravity with the center of the cylinder shaft. When there is a large discrepancy, the piston rod may be subjected to uneven wear or damage due to the inertial moment during locking stops.

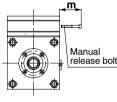
X Load center of gravity and cylinder O Load center of gravity and cylinder shaft center are matched. shaft center are not matched.

* An offset load can be operated if there is an effective guide to absorb all of the generated moment.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.


Mounting

A Caution


2. Cautions when using the base unit and when changing bracket positions, etc.

The lock unit and cylinder rod cover are assembled as shown in the drawing below. For this reason, it cannot be installed as in the case of common air cylinders, by using the basic type and screwing the cylinder tie-rods directly to machinery.

Furthermore, when brackets are replaced, the unit holding tierods may become loose and they should be retightened.

3. When installing the cylinder to machinery, etc., secure enough clearance and consider the mounting direction for manual lock release (releasing with the manual release bolt).

* Minimum Clearance	for Manual Release (mm)
Bore size (mm)	Clearance: m
125	50
140 160	60
180	70
200	80
250	90

Adjustment

A Caution

- 1. Adjust the cylinder's air balance. Balance the load by adjusting the air pressure in the front and rear sides of the cylinder with the load connected to the cylinder and the lock in a released condition. Lurching of the cylinder when unlocked can be prevented by carefully adjusting this air balance.
- 2. Adjust the mounting positions of the detectors on auto switches, etc. When intermediate stops are to be performed, adjust the mounting positions of detectors on auto switches, etc., taking into consideration the overrun amount with respect to the desired stopping positions.

Pneumatic Circuits

\land Warning

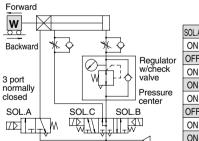
1. Be certain to use a pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.

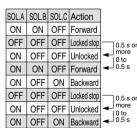
In order to prevent cylinder lurching when restarting or manually unlocking after a locked stop, a circuit should be used to apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.

2. Use a solenoid valve for unlocking with an effective area that is 25% or more of the effective area of the cylinder drive solenoid valve.

The larger the effective sectional area is, the shorter the locking time will be (the overrun amount will be shorter), and stopping accuracy will be improved.

3. Place the solenoid valve for unlocking close to the cylinder, and no farther than the cylinder drive solenoid valve.


The shorter the distance from the cylinder (the shorter the piping), the shorter the overrun amount will be, and stopping accuracy will be improved.


- 4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock. When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
- 5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve. If the signal is delayed, the piston rod (and load) may lurch at a

speed greater than the control speed of the speed controller.

6. Basic circuits

1. [Horizontal]

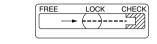
2. [Vertical]

[Load in direction of rod extension] [Load in direction of rod retraction]

ML1C

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator

and Auto Switch Precautions.


Lock Monitor

A Caution

The CLS series is equipped with a lock monitor on the lock unit. Use the lock monitor as a criterion to confirm the operating condition of the lock unit (brake piston) and the state of wear (life) of the brake shoe.

Unlocked

Locked by operation of brake

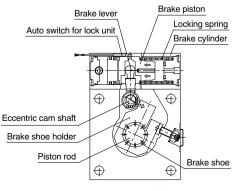
* Please note that the position of the mark when locked varies somewhat from unit to unit.

Brake shoe life

The position of the lock condition mark on the lock monitor gradually moves to the right side with wear of the shoe, etc. When the mark is half way

FREE	LOCK	CHECK
$\left \right\rangle$	-=	
	V	

or more into the CHECK zone, this indicates that the brake shoe is near the end of its life. (The brake will not immediately become ineffective in this condition.)


Auto Switch for Lock Unit

▲ Caution

- 1. By installing a switch on the brake cylinder of the CLS series, the operating condition (unlocked side) of the lock unit (brake piston) can be detected as a switch signal.
- * The condition of the lock monitor and the detection signal from the lock unit auto switch do not directly confirm the locking condition at the piston rod, but confirm this indirectly from the position of the brake piston.

Lock unit mechanism

The spring force applied to the brake piston is transmitted and magnified through the lever, eccentric cam shaft and brake shoe holder, finally tightening on the piston rod via the brake shoe and locking the piston rod by means of their mutual frictional force.

Locked condition (when air is exhausted.) Manual Unlocking

M Warning

- 1. Never perform the manual unlocking operation (with the manual release bolt, etc.) until safety has been confirmed.
 - 1) If air pressure is applied to only one side of the cylinder when unlocking is performed, the moving parts of the cylinder may lurch at high speed causing a serious hazard.
 - 2) When unlocking is performed, be sure to confirm that personnel are not within the movement range of the load, and also that no problems will be caused if the load is actuated.
- 2. When unlocking in the case of loads which move up and down, take measures to assure that the load will not drop.
 - 1) Perform work with the load at its lowest position.
 - 2) Prevent dropping of the load by using a support or brace, etc.
 - 3) Verify that balanced pressure is applied to both sides of the piston.

A Caution

1. The CLS series manual release mechanism is an emergency unlocking mechanism only.

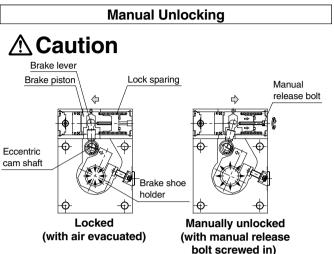
During an emergency when the air supply is cut off, it is used to alleviate a problem by forcibly pulling the brake piston back to release the lock

2. In the case of large bore cylinders, even when the lock is released, operational resistance as shown in the table below is generated in a non-load state.

Bore size (mm)	125	140	160	180	200	250
Operational resistance (N)	962	1206	1576	1995	2463	3848

3. Care must be taken, because if the manual release bolt is screwed in only part way and air is supplied to the unlocking port, or it is changed from a supply to an exhaust state, the head of the manual release bolt may be ejected from the end of the brake cylinder or be pulled in creating a serious hazard.

Unlocking procedure using the manual release bolt


- 1. Remove the hexagon socket head taper plug which is on the same side as the brake cylinder adjustment unit cover.
- 2. Insert the manual release bolt (see table below) into the threads and screw it in clock-wise.
- 3. The lock is released by screwing in the manual release bolt until the white mark of the lock monitor on the top of the brake cylinder moves to the FREE position.

Manual M6 v 1 0 v 257 M6 v 1 0 v 407 M8 v 1 25 v 407 M10 v 1 5 v 507 M10 v 1 5 v 557 M12 v 1 75							Unit: mm
	Bore size (mm)	125	140	160	180	200	250
release bolt	Manual release bolt	M6 x 1.0 x 35ℓ	M6 x 1.0 x 40ℓ	M8 x 1.25 x 40ℓ	M10 x 1.5 x 50ℓ	M10 x 1.5 x 55ℓ	M12 x 1.75 x 70ℓ
Screw depth 30 32 35 40.5 45 55	Screw depth	30	32	35	40.5	45	55

* In case the manual release bolt is not available, use an appropriate hexagon socket head bolt (full thread) as shown above.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

[Principle]

When the manual release bolt is screwed clockwise, the brake piston is pulled back and the spring is compressed. This causes the lever to be returned, releasing the lock.

Operating Environment

A Caution

1. In locations where the cylinder body will be directly exposed to cutting oil or coolant, etc., a cover or other protection should be provided for the cylinder body and rod. Maintenance

A Caution

- 1. The operating condition of the lock unit (brake piston) can be confirmed externally by means of the lock monitor.
 - 1) When the lock monitor mark has moved half way or more into the CHECK zone

If used in this condition, the holding force will gradually decrease. If an operational problem is found in the course of checking the lock's operating condition, early replacement of the cylinder body or lock unit is necessary. Contact SMC regarding replacement of the lock unit.

- 2) When the lock monitor mark moves into the CHECK zone prematurely Since there is a possibility of damage to the lock unit, consult with SMC after reviewing the method of operation.
- 2. This cylinder is a non-lube type. Do not lubricate the cylinder or apply grease to the piston rod, as there is a danger of drastically reducing brake performance.
- 3. When replacing seals in the base cylinder, it is recommended that the lock unit be separated from the base cylinder so that replacement work can be done on the cylinder alone. Refer to separate instructions for seal replacement.
- 4. Never disassemble the lock unit.
 - A heavy duty spring is contained in part of the unit, which presents a serious hazard if disassembly is performed incorrectly.
 - In addition, the lock unit is adjusted before shipment. If readjustment is not performed correctly after reassembly, a serious danger will be created, as performance will not meet specifications.

ML1C

D-□ -X□ Individual -X□