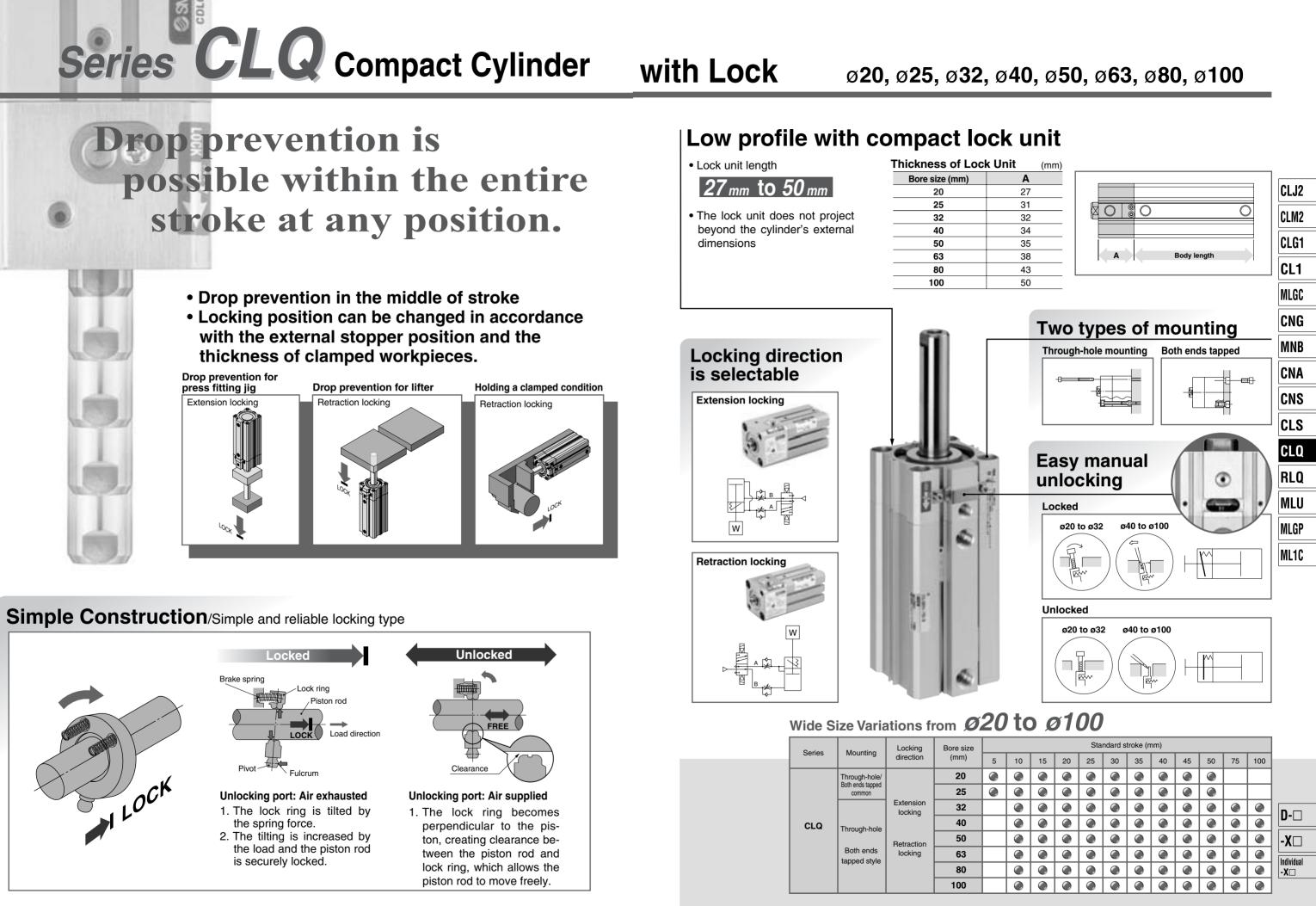

Compact Cylinder with Lock


Series CLQ

ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Drop prevention when the pressure of air source is decreased or the residual pressure is released.

SMC

				Sta	ndard s	troke (n	nm)					
5	10	15	20	25	30	35	40	45	50	75	100	
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲			
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲			
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	-
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	
	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲		

Series CLQ Specific Product Precautions 1

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

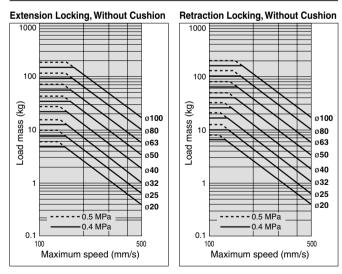
Selection

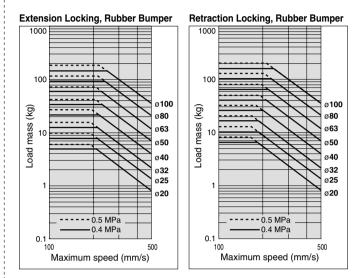
A Warning

1. The holding force (max. static load) indicates the maximum capability to hold a static load without vibration and impact. The maximum load in a locked state should be below 50 % of the holding force (max. static load).

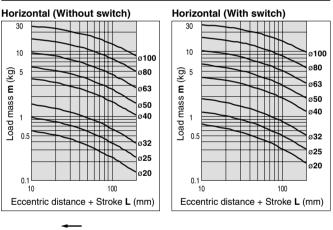
Refer to 6 when the kinetic energy of the workpiece is absorbed at the cylinder end or eccentric loads are applied.

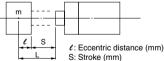
2. Do not use for intermediate stops while the cylinder is operating.


This cylinder is designed for locking against inadvertent movement with the locking mechanism from a stationary condition. Do not perform intermediate stops while the cylinder is operating, as this may damage the cylinder, cause unlocking malfunction or shorten the service life.


- **3.** Select the correct locking direction, as this cylinder does not generate holding force opposite to the locking direction. The extension locking does not generate holding force in the cylinder's retracting direction, and the retraction lock does not generate holding force in the cylinder's extension direction.
- 4. Even when locked, there may be stroke movement up to 1 mm in the locking direction due to external forces such as the weight of the workpiece.

Even when locked, if air pressure drops, stroke movement up to 1 mm may be generated in the locking direction of the lock mechanism due to external forces such as the workpiece weight.


- 5. When in the locked state, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc. This may damage the locking mechanism, shorten the service life or cause unlocking malfunction.
- 6. Operate so that load mass, maximum speed and eccentric distance are within the limiting ranges in the graphs below. If the products are used beyond the limiting range, it may lead to a reduced service life or cause damage to the machinery.


Allowable Kinetic Energy (Energy absorbable at the cylinder end)

Allowable Load Mass

Series CLQ Specific Product Precautions 2

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Pneumatic Circuit

A Warning

Drop prevention circuit

- 1. Do not use 3 position valves with circuit example 1. The lock may be released due to inflow of the unlocking pressure.
- 2. Install speed controllers as meter-out control. (Circuit example 1)

When they are not installed or they are used under meter-in control, it may cause malfunction.

3. Branch off the compressed air piping for the lock unit between the cylinder and the speed controller. (Circuit example 1) Note that branching off in other sections may shorten the

Note that branching off in other sections may shorten the service life.

4. Perform piping so that the unlocking port side going from the piping junction is short. (Circuit example 1)

If the piping of unlocking port side is longer than that of the cylinder port from the piping junction, this may cause unlocking malfunction or shorten the service life.

5. Be aware of reverse exhaust pressure flow from common exhaust type valve manifolds. (Circuit example 1)

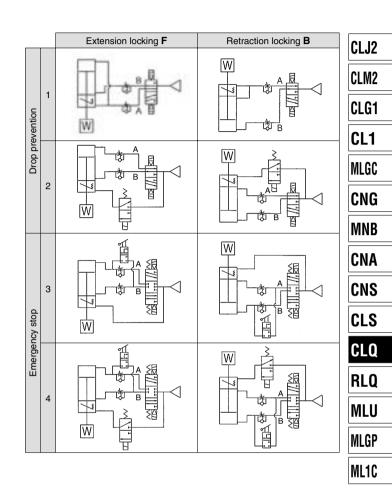
Since the lock may be released due to reverse exhaust pressure flow, use an individual exhaust type manifold or single type valve.

6. Be sure to release the lock before operating the cylinder. (Circuit example 2)

When the lock release delays, a cylinder may eject at high speed, which is extremely dangerous. It may also damage the cylinder, greatly shorten the service life or cause locking malfunction. Even when the cylinder moves freely, be sure to release the lock and operate the cylinder.

7. Be aware that the locking action may be delayed due to the piping length or the timing of exhaust. (Circuit example 2)

The locking action may be delayed due to the piping length or the timing of exhaust, which also makes the stroke movement toward the lock larger. Install the solenoid valve for locking closer to the cylinder than the cylinder drive solenoid valve.


• Emergency stop circuit

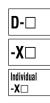
1. Perform emergency stops with the pneumatic circuit. (Circuit examples 3 and 4)

This cylinder is designed for locking against inadvertent movement from a stationary condition. Do not perform intermediate stops while the cylinder is operating, as this may damage the cylinder, cause unlocking malfunction or shorten the service life. Emergency stops must be performed with the pneumatic circuit, and workpieces must be held with the locking mechanism after the cylinder fully stops.

- 2. When restarting the cylinder from the locked state, remove the workpiece and exhaust the residual pressure in the cylinder. (Circuit examples 3 and 4) A cylinder may eject at high speed, which is extremely dangerous. It may also damage the cylinder, greatly shorten the service life or cause locking malfunction.
- 3. Be sure to release the lock before operating the cylinder. (Circuit example 4)

When the lock release delays, the cylinder may eject at high speed, which is extremely dangerous. It may also damage the cylinder, greatly shorten the service life or cause locking malfunction. Even when the cylinder moves freely, be sure to release the lock and operate the cylinder.

Mounting


A Caution

1. Be sure to connect the load to the rod end with the cylinder in an unlocked condition.

If this is done in the locked state, it may cause damage to the lock mechanism.

2. Mount auto switches from the head side.

The lock body and cylinder tube exterior have the same shape for cylinder bore sizes ø40 to ø100, but auto switches may not be mountable from the rod side. For the head side flange or double clevis styles, install mounting brackets after mounting auto switches and auto switch mounting brackets from the head side.

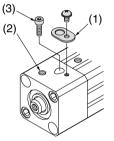
Series CLQ Specific Product Precautions 3

Be sure to read before handling. Befer to front matters 42 and 43 for Safety In

Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Preparing for Operation

\land Warning


1. When starting operation from the locked position, be sure to restore air pressure to the B line in the pneumatic circuit. (Example 1)

When pressure is not applied to the B line, the load may drop or the cylinder may eject at high speed, which is extremely dangerous. It may also damage the cylinder, greatly shorten the service life or cause unlocking malfunction. When applying pressure to the B line, be sure to confirm whether the environment is safe, since workpieces may move.

2. Size ø20 to ø 32 are shipped in the unlocked condition maintained by the unlocking bolt. Be sure to remove the unlocking bolt following the steps below before operation.

The unlocking mechanism will not be effective without the removal of the unlocking bolt.

Only ø20 to ø32

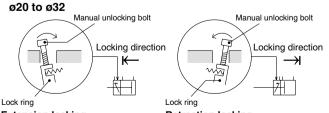
- 1) Confirm that there is no air pressure inside the cylinder, and remove the dust cover (1).
- Supply air pressure of 0.2 MPa or more to unlocking port (2) shown in the drawing on the left.
- Remove the unlocking bolt (3) with a hexagon wrench (width across flats 2.5).

Since a holding function for the unlocked state is not available for sizes ø40 through ø100, they can be used as shipped.

Manually Unlocking

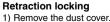
A Warning

1. Do not perform unlocking while an external force such as a load or spring force is being applied.

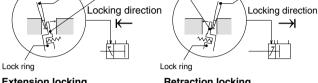

This is very dangerous because the cylinder will move suddenly.

Release the lock after preventing cylinder movement with a lifting device such as a jack.

2. After confirming safety, operate the manual release following the steps shown below.


Confirm that there are no personnel inside the load movement range, etc., and that there is no danger even if the load moves suddenly.

Manually unlocking


Extension locking

- 1) Remove the dust cover.
- 2) Screw a manual unlocking bolt (a bolt of M3 x 0.5 x 15 *ℓ* or more commercially available) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (head side) to unlock.

2) Screw a manual unlocking bolt (a bolt of M3 x 0.5 x 15 *t* or more commercially available) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (rod side) to unlock.

Extension locking

 Remove the dust cover.
 Insert a flat head screwdriver on the rod side of the manual unlocking lever as shown in the figure above, and lightly push the screwdriver in the direction of the arrow (rod side) to unlock.

Retraction locking

 Remove the dust cover.
 Insert a flat head screwdriver on the head side of the manual unlocking lever as shown in the figure above, and lightly push the screwdriver in the direction of the arrow (head side) to unlock.

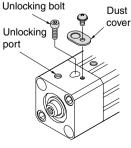
Maintenance

A Caution

1. In order to maintain good performance, operate with clean unlubricated air.

If lubricated air, compressor oil or drainage, etc., enters the cylinder, there is a danger of sharply reducing the locking performance.

- **2. Do not apply grease to the piston rod.** There is a danger of sharply reducing the locking performance.
- **3. Never disassemble the lock unit.** It contains a heavy duty spring which is dangerous and there is also a danger of reducing the locking performance.
- 4. Never remove the pivot seal and disassemble the internal unit.

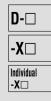

As for ø20 to ø32, a ø12 silver seal (pivot seal) is labeled on the one surface of the lock body (on the surface opposite from the unlocking port). The seal is meant for dust prevention, but even if it's peeled off, there would be no problem functionally. However, never disassemble the internal parts.

Holding the Unlocked State

\land Warning

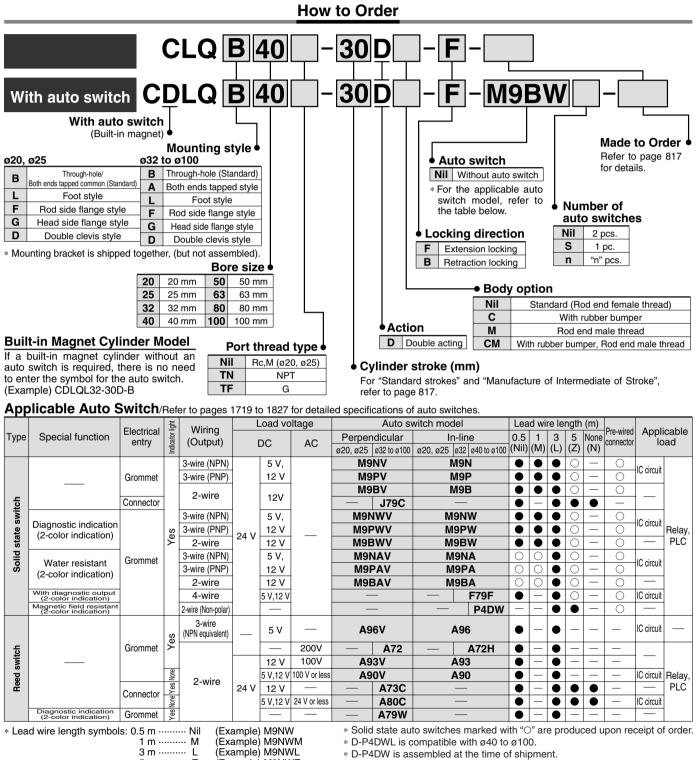
1. ø20 to ø32 can hold the unlocked condition. <Holding the unlocked state>

- 1) Remove the dust cover.
- Supply air pressure of 0.2 MPa or more to the unlocking port, and set the lock ring to the perpendicular position.
- 3) Screw the attached bolt for unlocking (hexagon socket head cap screw/Ø20, Ø25: M3 x 5 ℓ, Ø32: M3 x 10 ℓ) into the lock ring to hold the unlocked condition.



2. To use the lock mechanism again, be sure to remove the unlocking bolt.

When the unlocking bolt is screwed in, the lock mechanism does not function. Remove the unlocking bolt according to the steps prescribed in the section of "Preparing for Operation".



CLJ2
CLM2
CLG1
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP
ML1C

SMC

Compact Cylinder with Lock Double Acting, Single Rod Series CLQ ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

5 m 7

None ······ N (Example) J79CN

(Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 837 for details.

* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785

* When D-A9□(V)/M9□(V)/M9□W(V)/M9□A(V)L types with ø32 to ø50 are mounted on a side other than the port side, order auto switch mounting brackets separately. Refer to page 836 for details.

* When mounting brackets (foot/head side flange/double clevis style) are used, then in some cases auto switches cannot be retrofitted.

Cylinder Specifications

Bore size (mm)	20	25	32	40	50	63	80	100			
Action			Dout	ole actin	g, Singl	e rod					
Fluid				A	ir						
Proof pressure	1.5 MPa										
Maximum operating pressure	1.0 MPa										
Minimum operating pressure	0.2 MPa Note 1)										
Ambient and		Withou	ut auto s	witch: -	10 to 70)°C (No	freezing	J)			
fluid temperature		With	auto sv	vitch: -1	0 to 60°	C (No fi	reezing)				
Lubrication				Non	lube						
Piston speed				50 to 50)0 mm/s						
Stroke length tolerance	+1.0 mm Note 2)										
Cushion	None, rubber bumper										
Port size (Rc, NPT, G)	M5 x 0.8 1/8 1/4 3/8										

Note 1) The minimum operating pressure of the cylinder is 0.1 MPa when the cylinder and lock are connected to separate ports.

Note 2) Stroke length tolerance does not include the amount of bumper change.

Lock Specifications

										MNB		
Bore size (mm)		20	25	32	40	50	63	80	100	0.1.4		
Locking action				Spring lo	ocking (I	Exhaust	locking)		CNA		
Unlocking pressure	e			(0.2 MPa	or more	e			CNS		
Lock starting press	sure	0.05 MPa or less										
Locking direction		One direction (Either extension locking or retraction locking)										
	Rc	M5 x	M5 x 0.8 1/8 1/4							CLS		
Unlocking port size	NPT]		1/4						
	G]			M5 :	k 0.8	1/8	1/4	CLQ			
Holding force (N)		157	245	402 629 982 1559 2513 392						RLQ		
(Maximum static lo	ad)		Equivalent to 0.5 MPa									
Noto) Bo suro to soloci	cylindo	e roforrir		Q12								

Note) Be sure to select cylinders referring page 812.

Standard Stroke

Bore size (mm)	Standard stroke (mm)
20, 25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
32, 40, 50, 63, 80, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100

Manufacture of Intermediate Stroke

Description	Spacer is installed in the standard stroke body.							
Part no.	Refer to "How to Order" for the standard model no. on page 816.							
Method	Dealing with the stroke by the 1 mm interval is available by installing spacer with standard stroke cylinder.							
	Bore size (mm)	Stroke range (mm)						
Stroke range	20, 25	1 to 50						
	32, 40, 50, 63, 80, 100	1 to 100						
Example	Part no.: CLQB40-47D-B 3 mm spacer is installed in standard cylinder CLQB40-50D-B. B dimension is 79.5 mm.							

Note) ø40 to ø100 bumper spacers with intermediate strokes can be manufactured in 5 mm increments from 55 to 95 mm.

with auto switches.

- · Minimum auto switch mounting stroke
- at stroke end) and mounting height
- Operating range

JIS Symbol

Symbol

-XA🗆

-XC35

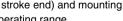
Extension locking

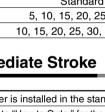
Retraction locking

Made to Order Specifications (For details, refer to pages 1836 and 1926.)

Specifications

With coil scraper (ø40 to ø100 only)


Change of rod end shape


W

• Switch mounting bracket: Part no.

Refer to pages 834 to 837 for cylinders

- Proper auto switch mounting position (detection

	D- □
	-X□
1	
	Individual
	-X□

CLJ2

CLM2

CLG1

CL1

MLGC

CNG

MLU

MLGP

ML1C

Mounting Bracket Part No

	Mounting Diacket Fait No.													
Foot (1)	Flange	Double clevis												
CLQ-L020	CLQ-F020	CLQ-D020												
CLQ-L025	CLQ-F025	CLQ-D025												
CLQ-L032	CLQ-F032	CLQ-D032												
CLQ-L040	CLQ-F040	CLQ-D040												
CLQ-L050	CLQ-F050	CLQ-D050												
CLQ-L063	CLQ-F063	CLQ-D063												
CLQ-L080	CLQ-F080	CLQ-D080												
CLQ-L100	CLQ-F100	CLQ-D100												
	CLQ-L020 CLQ-L025 CLQ-L032 CLQ-L040 CLQ-L050 CLQ-L063 CLQ-L080	CLQ-L020 CLQ-F020 CLQ-L025 CLQ-F032 CLQ-L032 CLQ-F032 CLQ-L030 CLQ-F030 CLQ-L050 CLQ-F040 CLQ-L050 CLQ-F050 CLQ-L063 CLQ-F063 CLQ-L080 CLQ-F080												

Note 1) When ordering foot bracket, order 2 pieces per cylinder.

Note 2) Parts belonging to each bracket are as follows. Foot, Flange: Body mounting screws, Double clevis: Clevis pin, type C retaining ring for shaft, Body mounting screws, Flat washer.

Note 3) Clevis pin and retaining ring are included with the double clevis style.

(N) Operating pressure (MPa) Bore size (mm) Operating direction 0.3 0.5 0.7 IN OUT IN OUT IN OUT IN OUT IN OUT IN OUT

Mass

Basic Mass: Mounting/Through-hole (Type B)

IN

OUT

IN

OUT

							<u> </u>					(0)			
Bore size	Standard stroke (mm)														
(mm)	5	10	15	20	25	30	35	40	45	50	75	100			
20 *	184	199	213	227	241	255	270	284	298	312	_	—			
25 *	260	278	295	312	329	346	364	381	398	415	_	—			
32	—	407	430	453	475	498	521	544	566	589	754	867			
40	—	514	537	560	583	606	630	653	676	699	883	1003			
50	_	838	874	910	947	983	1019	1055	1092	1128	1421	1609			
63	—	1202	1242	1283	1324	1365	1406	1447	1488	1529	1877	2088			
80	—	2229	2297	2364	2432	2500	2568	2636	2704	2771	3344	3678			
100	—	3770	3860	3951	4041	4132	4223	4313	4404	4495	5299	5759			

* Through-hole and both ends tapped are common for sizes ø20 and ø25.

Basic Mass:

Mounting/Both Ends Tapped (Type A)

(g) Standard stroke (mm) Bore size (mm) 4054 4154

Additional Mass

Bore size (mm)		20	25	32	
Magnet		35	45	64	
Rod end male thread	Thread	6	12	26	
Rod end male inread	Nut	4	8	17	
With rubber bumper	-2	-3	-3		
Foot style (Including mou	152	174	137		
Rod side flange style (Including m	nounting bolt)	127	149	174	
Head side flange style (Including n	nounting bolt)	121	140	159	
Double clevis style (Including pin, snap ring, bolt and	76	111	145		
Calculation: (Example) CDLQD • Basic mass : CLQA32-20D	When auto sy auto switch a				

..... 64 g Additional mass: Magnet------Rod end male thread 43 g Double clevis-----145 g

702 g

-3 -7 -9 -18 -31 -56

uto switches are mounted, add the mass of the tch and auto switch mounting bracket multiplied by the quantity.

Auto Switch Mounting Bracket Mass

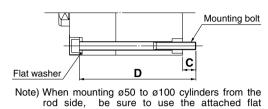
Auto Switch mounting bracket part no.	Applicable bore size (mm)	mass (g)
BQ-2	ø32 to ø100	1.5
BQ2-012	ø32 to ø100	5
BOP1-050	a40 to a100	16

For the auto switch mass, refer to page 1719. Refer to pages 836 and 837 for applicable auto switch mounting brackets.

Theoretical Output

(g)

(g)


IN

Compact Cylinder with Lock Double Acting, Single Rod Series CLQ

Mounting Bolt for C□LQB

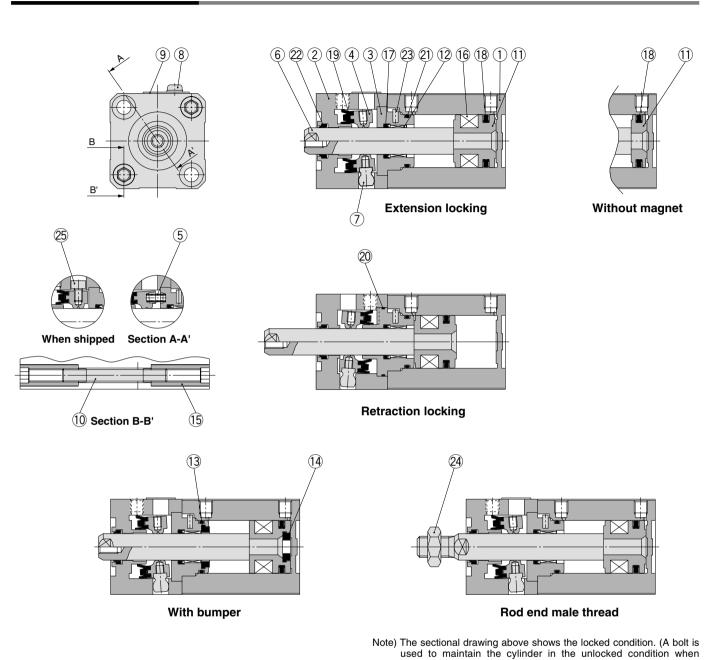
Mounting method: Mounting bolt for through-hole mounting style of $C \square LQB$ is available as an option. Ordering: Add the word "Bolt" in front of the bolts to be used. **Example) Bolt M6 x 90 L 4 pcs.**

washers because the bearing surface is limited.

CLJ2

ML1C

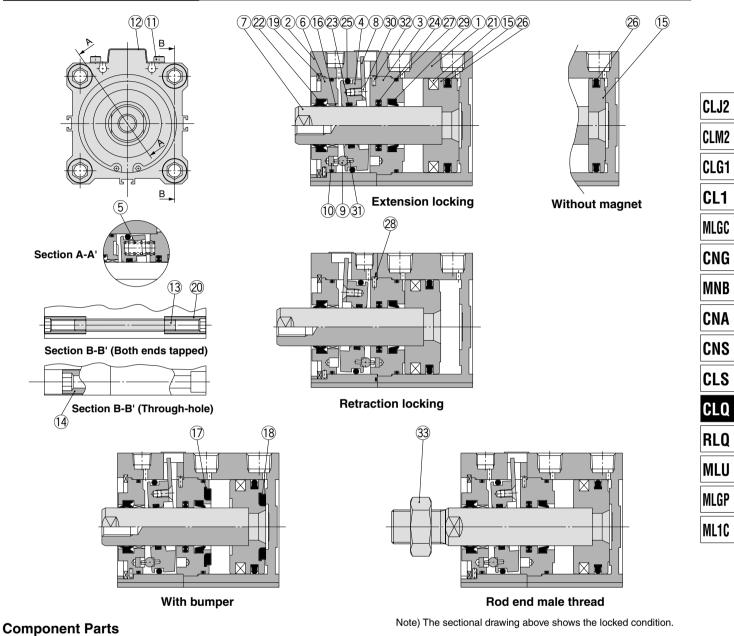
CLQB: Without Auto Switch


	lino		AULO SWIL											-			CLM2
Cylinder model	С	D	Mounting bolt size	Cylinder model	с	D	Mounting bolt size	Cylinder model	С	D	Mounting bolt size		Cylinder model	С	D	Mounting bolt size	CLG1
CLQB20-5D		55	M5 x 55 L	CLQB32-10D		65	M5 x 65 L	CLQB50-10D		80	M6 x 80 L		CLQB80-10D		100	M10 x 100 L	
-10D		60	x 60 L	-15D		70	x 70 L	-15D		85	x 85 L		-15D		105	x 105 L	CL1
-15D		65	x 65 L	-20D		75	x 75 L	-20D		90	x 90 L		-20D		110	x 110 L	MLGC
-20D		70	x 70 L	-25D		80	x 80 L	-25D		95	x 95 L		-25D		115	x 115 L	
-25D	10.5	75	x 75 L	-30D		85	x 85 L	-30D		100	x 100 L		-30D		120	x 120 L	
-30D	10.0	80	x 80 L	-35D	7	90	x 90 L	-35D	12.5	105	x 105 L		-35D	17	125	x 125 L	CNG
-35D		85	x 85 L	-40D		95	x 95 L	-40D		110	x 110 L		-40D		130	x 130 L	
-40D		90	x 90 L	-45D		100	x 100 L	-45D		115	x 115 L		-45D		135	x 135 L	MNB
-45D		95	x 95 L	-50D		105	x 105 L	-50D		120	x 120 L		-50D		140	x 140 L	0110
-50D		100	x 100 L	-75D		140	x 140 L	-75D		155	x 155 L		-75D		175	x 175 L	CNA
CLQB25-5D		60	M5 x 60 L	-100D		165	x 165 L	-100D		180	x 180 L		-100D		200	x 200 L	010
-10D		65 x 65 L CLQB40-10D 7	75	M5x 75L	CLQB63-10D		90	M8 x 90 L		CLQB100-10D		115	M10 x 115 L	CNS			
-15D		70	x 70 L		80	x 80 L	-15D		95	x 95 L		-15D		120	x 120 L	01.0	
-20D		75	x 75 L		85	x 85 L	-20D		100	x 100 L		-20D		125	x 125 L	CLS	
-25D	8.5	80	x 80 L	-25D		90	x 90 L	-25D		105	x 105 L		-25D		130	x 130 L	01.0
-30D	0.0	85	x 85 L	-30D		95	x 95 L	-30D		110	x 110 L		-30D		135	x 135 L	CLQ
-35D		90	x 90 L	-35D	8.5	100	x 100 L	-35D	16.5	115	x 115 L		-35D -40D	15.5	140	x 140 L	
-40D		95	x 95 L	-40D		105	x 105 L	-40D		120	x 120 L				145	x 145 L	RLQ
-45D		100	x 100 L	-45D	-45D 110 x 110 L	-45D		125	x 125 L		-45D		150	x 150 L	NAL 12		
-50D		105 x 105 L -50D 115 x 115 L -50D 13	130	x 130 L		-50D		155	x 155 L	MLU							
				-75D		150	x 150 L	-75D		165	x 165 L		-75D		190	x 190 L	
				-100D		175	x 175 L	-100D		190	x 190 L		-100D		215	x 215 L	MLGP

CDLQB: Without Auto Switch

Cylinder model	с	D	Mounting bolt size	Cylinder model	С	D	Mounting bolt size		Cylinder model	С	D	Mounting bolt size		Cylinder model	с	D	Mounting bolt size	
CDLQB20-5D		65	M5 x 65 L	CDLQB32-10D		75	M5 x 75 L		CDLQB50-10D		90	M6 x 90 L	(CDLQB80-10D		110	M10 x 110 L	
-10D		70	x 70 L	-15D		80	x 80 L		-15D		95	x 95 L		-15D		115	x 115 L	
-15D		75	x 75 L	-20D		85	x 85 L		-20D		100	x 100 L		-20D		120	x 120 L	
-20D		80	x 80 L	-25D		90	x 90 L		-25D		105	x 105 L		-25D		125	x 125 L	
-25D	10.5	85	x 85 L	-30D		95	x 95 L		-30D		110	x 110 L		-30D		130	x 130 L	
-30D	10.5	90	x 90 L	-35D	7	100	x 100 L		-35D	12.5	115	x 115 L		-35D	17	135	x 135 L	
-35D		95	x 95 L	-40D		105	x 105 L		-40D		120	x 120 L		-40D		140	x 140 L	
-40D		100	x 100 L	-45D		110	x 110 L		-45D		125	x 125 L		-45D		145	x 145 L	
-45D		105	x 105 L	-50D		115	x 115 L		-50D		130	x 130 L		-50D		150	x 150 L	
-50D		110	x 110 L	-75D		140	x 140 L		-75D		155	x 155 L		-75D		175	x 175 L	
CDLQB25-5D		70	M5 x 70 L	-100D		165	x 165 L		-100D		180	x 180 L		-100D		200	x 200 L	
-10D		75	x 75 L	CDLQB40-10D		85	M5 x 85 L		CDLQB63-10D		100	M8 x 100 L	C	DLQB100-10D		125	M10 x 125 L	
-15D		80	x 80 L	-15D		90	x 90 L	_	-15D		105	x 105 L		-15D		130	x 130 L	
-20D		85	x 85 L	-20D		95	x 95 L		-20D		110	x 110 L		-20D		135	x 135 L	
-25D	8.5	90	x 90 L	-25D		100	x 100 L		-25D		115	x 115 L		-25D		140	x 140 L	,
-30D	0.5	95	x 95 L	-30D		105	x 105 L		-30D		120	x 120 L		-30D		145	x 145 L	
-35D		100	x 100 L	-35D	8.5	110	x 110 L		-35D	16.5	125	x 125 L		-35D	15.5	150	x 150 L	ļ
-40D		105	x 105 L	-40D		115	x 115 L		-40D		130	x 130 L		-40D		155	x 155 L	
-45D		110	x 110 L	-45D		120	x 120 L		-45D		135	x 135 L		-45D		160	x 160 L	ļ
-50D		115	x 115 L	-50D		125	x 125 L		-50D		140	x 140 L		-50D		165	x 165 L	
				-75D		150	x 150 L		-75D		165	x 165 L		-75D		190	x 190 L	
				-100D		175	x 175 L		-100D		190	x 190 L		-100D		215	x 215 L	

Construction: ø20 to ø32


shipped.)

No.	Description	Material	Note
12	D (11)	Oil-impregnated sintered alloy	ø20, 25
12	Bushing	Copper alloy	ø32
13	Bumper A	Urethane	
14	Bumper B	Urethane	
15	Tie-rod nut	Carbon steel	Nickel plated
16	Magnet	_	
17	Rod seal	NBR	
18	Piston seal	NBR	
19	Lock ring seal	NBR	
20	Tube gasket A	NBR	
21	Tube gasket B	NBR	
22	Scraper	NBR	
23	Parallel pin	Stainless steel	JIS B 1354
24	Rod end nut	Carbon steel	Nickel plated
25	Unlocking bolt	Chromium molybdenum steel	Nickel plated

Component Parts

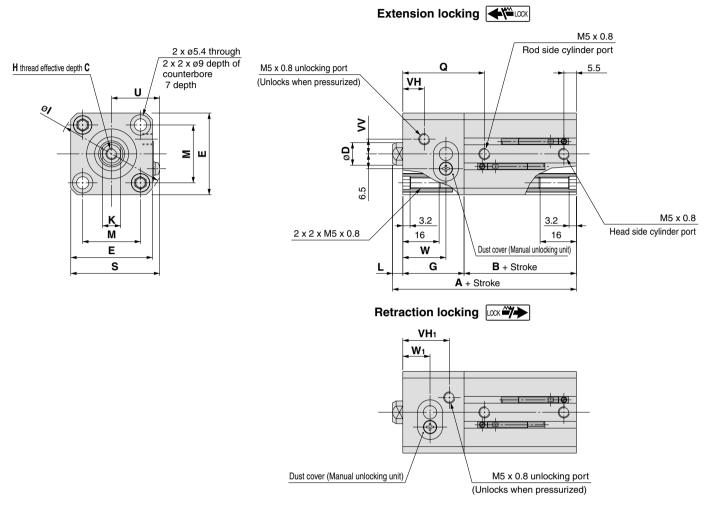
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Lock body	Aluminum alloy	Hard anodized
3	Intermediate collar		Extension locking: Chromated
	Intermediate conar	Aluminum alloy	Retraction locking: Hard anodized
4	Lock ring	Carbon steel	Heat treated
5	Brake spring	Steel wire	Zinc chromated
6	Piston rod	Stainless steel	ø20, 25: Hard chrome plated
	PISION FOO	Carbon steel	ø32: Hard chrome plated
7	Pivot	Chromium molybdenum steel	Electroless nickel plated
8	Dust cover holding bolt	Carbon steel	Nickel plated
9	Dust cover	Stainless steel	
			ø20: Nickel plated
10	Tie-rod	Rolled steel	ø25: Zinc chromated
			ø32: Black zinc chromated
11	Piston	Aluminum alloy	Chromated

Construction: ø40 to ø100

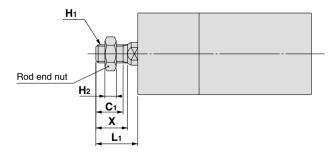
SMC

No.	Description	Material	Note			
1	Cylinder tube	Aluminum alloy	Hard anodized			
2	Lock body	Aluminum alloy	Hard anodized			
3	Intermediate collar	Aluminum alloy	Chromated			
4	Lock ring	Carbon steel	Heat treated			
5	Brake spring	Steel wire	Zinc chromated			
6	Collar	Aluminum bearing alloy	ø40: Hard anodized			
0	Collar	Aluminum alloy casted	ø50 to ø100: Chromated, painted			
7	Piston rod	Hard chrome plated				
8	Lever	Stainless steel				
9	Pivot pin	Carbon steel	Zinc chromated			
10	Pivot key	Carbon steel	Zinc chromated			
11	Dust cover holding bolt	Chromium molybdenum steel	Nickel plated			
12	Dust cover	Rolled steel	Nickel plated			
13	Tie-rod	Rolled steel	ø40, Zinc chromated			
13	ne-roa	Carbon steel	ø50 or larger, Zinc chromated			
14	Unit holding bolt	Carbon steel	Nickel plated			
15	Piston	Aluminum alloy	Chromated			
16	Bushing	Copper alloy	For ø50 or larger only			

No.	Description	Material	Note
17	Bumper A	Urethane	
18	Bumper B	Urethane	
19	Retaining ring	Carbon tool steel	Phosphate coated
20	Tie-rod nut	Carbon steel	Nickel plated
21	Magnet	—	
22	Rod seal A	NBR	
23	Rod seal B	NBR	
24	Rod seal C	NBR	
25	Piston seal A	NBR	
26	Piston seal B	NBR	
27	Tube gasket A	NBR	
28	Tube gasket B	NBR	
29	Scraper	NBR	
30	Hexagon socket countersunk head screw	Chromium molybdenum steel	Nickel plated
31	Spring pin	Carbon steel	JIS B 2808
32	Parallel pin	Stainless steel	JIS B 1354
33	Rod end nut	Carbon steel	Nickel plated



D-🗆


-X□ Individual -X□

Dimensions: ø20, ø25

Basic style (Through-hole/Both ends tapped common): C□LQB20/25

Rod end male thread

																				(11111)
Bore size	Stroke range	Without a	uto switch	With aut	to switch	~	п	E	6	u		ĸ		м	0	c		νн	vv	w
(mm)	Official ange	Α	B	Α	В	C		-	G	п		ĸ	L .	111	Q	3	U	VII	vv	
20	5 to 50	51	19.5	61	29.5	7	10	36	27	M5 x 0.8	47	8	4.5	25.5	36	39.2	21.2	9.5	6.5	19
25	5 to 50	58.5	22.5	68.5	32.5	12	12	40	31	M6 x 1.0	52	10	5	28	42	43.2	23.2	10	7	21.5

(mm)

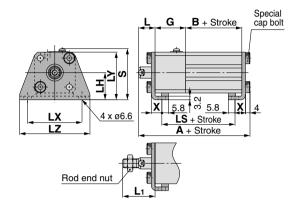
Retraction Locking (mm)

Bore size (mm)	VH1	W 1
20	20.5	12
25	23	14.5

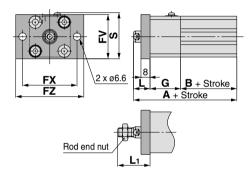
Rod End Male Thread

Bore size (mm)	C 1	x	H1	H2	L1
20	12	14	M8 x 1.25	5	18.5
25	15	17.5	M10 x 1.25	6	22.5

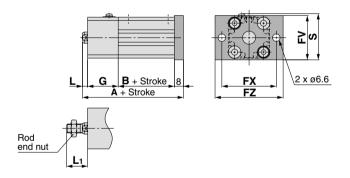
 \ast Dimensions for cylinders with a rubber bumper are the same as the standard type above.

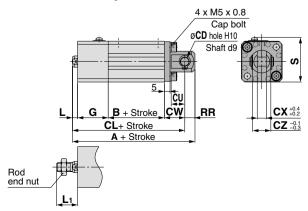

(mm)

** Refer to page 832 for details of rod end nuts and accessory brackets.



Dimensions: ø20, ø25


Foot style: CLQL/CDLQL


Rod side flange style: CLQF/CDLQF

Head side flange style: CLQG/CDLQG

Double clevis style: CLQD/CDLQD

oot Styl	<u>م</u>										r
Bore size			With	out au	to swit	ch		With	auto sv	(mm) /itch	CLJ2
(mm)	Stroke	e range	Α	B	L	.s		Α	В	LS	
20	5 to	o 50	68.2	2 19.	.5 3	4.5	7	8.2	29.5	44.5	CLM2
25	5 to	o 50	75.7	22.	.5 3	8.5	8	5.7	32.5	48.5	
<u> </u>									1		CLG1
Bore size (mm)	G	L	L1	LH	LX	L	Υ	LZ	S	x	
. ,	_										014
20	27	14.5	28.5	24	48	4	2	62	45.2	9.2	CL1
25	31	15	32.5	26	52	4	6	66	49.2	10.7	
											MICC

Rod Side	Rod Side Flange Style (mm)														
Bore size	Chroke		Without	t aı	uto sw	itch	Wit	th auto	switch						
(mm)	Stroke	range	Α		В	6		Α	В						
20	5 to	5 to 50			19.	5	7	1	29.5						
25	5 to	5 to 50			22.	5	7	8.5	32.5						
Bore size (mm)	FV	FV FX			G	L	-	L1	S						
20	39	39 48			27	14	.5	28.5	40.7						
25	42	52	64		31	15	32.5		44.2						

CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP
ML1C

(mm)

Head Side Flange Style

	-	-						(/		
Stroko	rango	Without	t au	uto sw	itch	With auto switch				
Slicke	lange	Α		В		Α		В		
5 to	59		19.	5	6	9	29.5			
5 to 50		66.5		22.5		76.5		32.5		
FV	FX	FZ		G	L		L1	s		
39 48		60	2	27	4.5		18.5	40.7		
42 52		64		21	5		22.5	44.2		
	5 to 5 to FV 39	FV FX 39 48	Stroke range A 5 to 50 59 5 to 50 66.5 FV FX FZ 39 48 60	Stroke range A 5 to 50 59 5 to 50 66.5 FV FX FZ 39 48 60 5	Stroke range A B 5 to 50 59 19. 5 to 50 66.5 22. FV FX FZ G 39 48 60 27	Stroke range A B 5 to 50 59 19.5 5 to 50 66.5 22.5 FV FX FZ G L 39 48 60 27 4.	Stroke range A B 5 to 50 59 19.5 6 5 to 50 66.5 22.5 7 FV FX FZ G L 39 48 60 27 4.5	A B A 5 to 50 59 19.5 69 5 to 50 66.5 22.5 76.5 FV FX FZ G L 39 48 60 27 4.5 18.5		

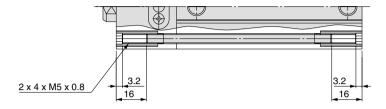
Double Clevis Style

										(mm)
Bore size	Strok	Stroke range		ithou	ut auto s	switch	V	Vith a	uto sw	ritch
(mm)	SILOK			1	В	CL	A		B	CL
20	5 t	o 50	78		19.5	69	88	2	9.5	79
25	5 t	o 50	88	.5	22.5	78.5	98.	5 3	2.5	88.5
						-				
Bore size (mm)	CD	си	cw	сх	(cz	G	L	Lı	RR	s
20	8	12	18	8	16	27	4.5	18.5	9	39.2
25	10	14	20	10	20	31	5	22.5	10	43.2

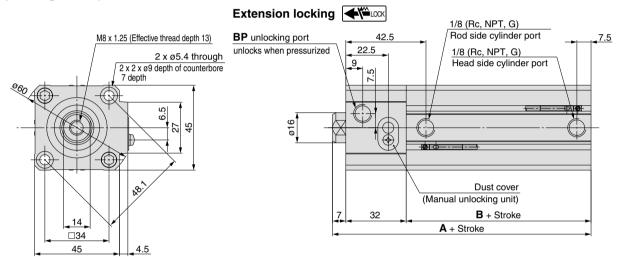
* Refer to page 832 for details of rod end nuts and accessory brackets.
** Double clevis pins and retaining rings are included.

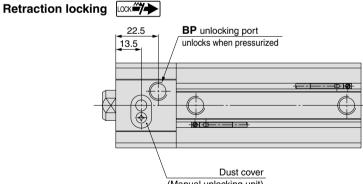
(mm)

D-□


-X□

Individual


-X□


Dimensions: ø32

Both ends tapped style: C□LQA32

Basic style (Through-hole): C□LQB32

(Manual unlocking unit)

Port thread type BP Rc 1/8 NPT 1/8 G M5 x 0.8

Stroke

range

10 to 50

75, 100

Bore size

(mm)

32

* Dimensions for cylinders with a rubber bumper are the same as the standard type above.

Without auto switch

Α

62

72

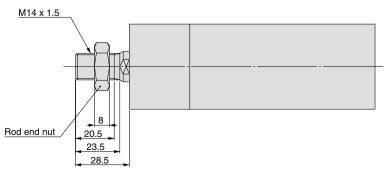
В

23

33

** Refer to page 832 for details of rod end nuts and accessory brackets.

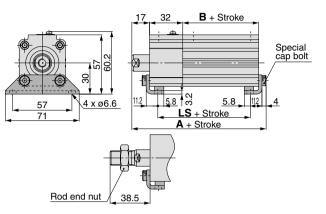
Rod end male thread

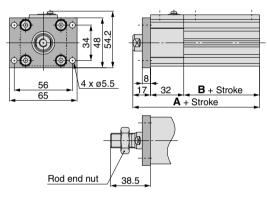

(mm)

В

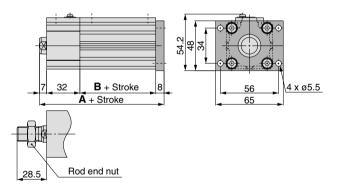
33

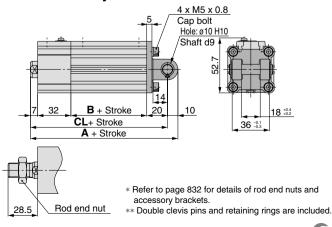
With auto switch


Α



Dimensions: ø32


Foot style: C□LQL32


Rod side flange style: C□LQF32

Head Side flange style: C□LQG32

Double clevis style: C□LQD32

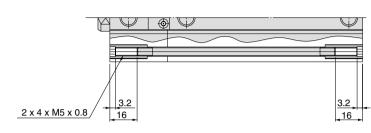
Foot Style (mm)										
Bore size	Stroke range	Witho	ut auto s		With auto switch					
(mm)	, i i i i i i i i i i i i i i i i i i i	Α	В	LS	A	В	LS			
32	10 to 50	79.2	23	39	89.2	33	49			
52	75, 100	89.2	33	49			49			

Rod Side Flange Style

	i lange e	.,			(11111)
Bore size	Stroke range	Without a	uto switch	With aut	o switch	1
(mm)	Stroke range	Α	В	Α	В	Ī
32	10 to 50	72	23	82	33	
32	75, 100	82	33	02	- 33	

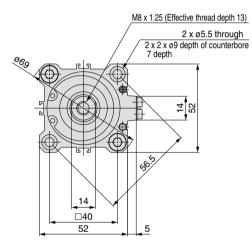
CLM2
CLG1
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP
ML1C

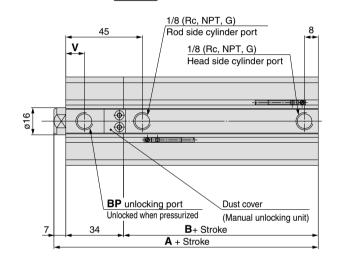
CLJ2


Head Side Flange Style

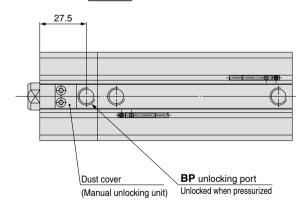
SMC

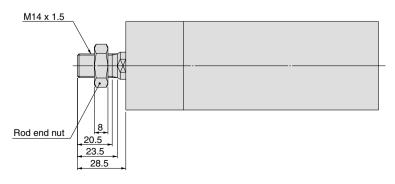
Head Side Flange Style (mm)										
Bore size	Stroke range	Without a	uto switch	With aut	o switch					
(mm)	Sticke lange	Α	В	Α	В					
32	10 to 50	70	23	80	33					
	75, 100	80	33	80	33					


Double C	levis Styl	е					(mm)	
Bore size	Stroke range	Witho	ut auto	to switch With auto switch			witch	□-ע
(mm)	Stroke range	Α	В	CL	Α	В	CL	V
32	10 to 50	92	23	82	102	33	92	-X L
32	75, 100	102	33	92	102	- 33	92	Individual
								-X 🗆


Dimensions: ø40

Both ends tapped style: C□LQA40


Basic style (Through-hole): C□LQB40



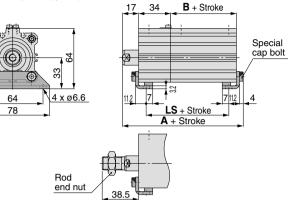
Retraction locking

Extension locking

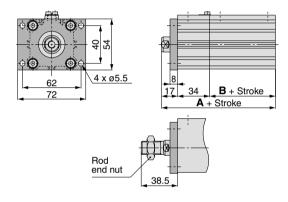
Rod end male thread

A, B Dimensions (mm)											
Bore size	Stroke range	Without a	uto switch	With aut	to switch						
(mm)	(mm)	Α	В	Α	В						
	10 to 50	70.5	29.5	00 F	20 F						
40	75, 100	80.5	39.5	80.5	39.5						

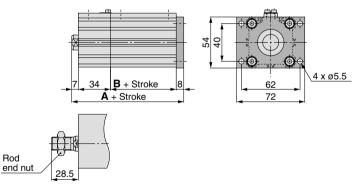
Port thread type	BP	V	
Rc	1/0	11	
NPT	1/8		
G	M5 x 0.8	13	

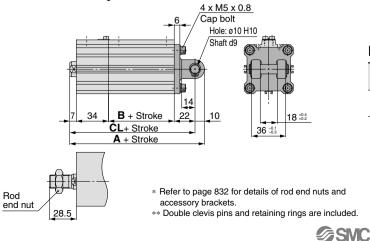

* Dimensions for cylinders with a rubber bumper are the

same as the standard type above. ** Refer to page 832 for details of rod end nuts and accessory brackets.



Dimensions: ø40


Foot style: C□LQL40


Rod side flange style: C□LQF40

Head Side flange style: C□LQG40

Double clevis style: C□LQD40

Foot Style (mm)										
Bore size (mm)	Stroke range	Witho A	ut auto : B	switch	With A	n auto sv B	vitch LS			
40	10 to 50	87.7	29.5	47.5	97.7	39.5	57.5			
40	75, 100	97.7	39.5	57.5	97.7					

Bod Side Flange Style

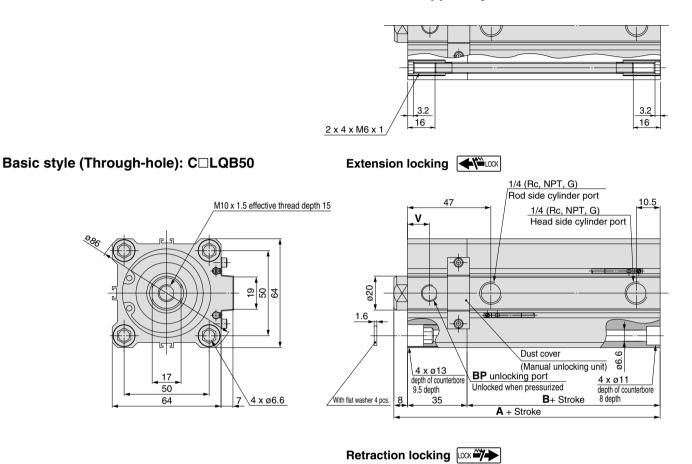
			-,			(11111)
I	Bore size	Stroke range	Without a	uto switch	With aut	o switch
	(mm)	otrono rango	Α	В	Α	В
	40	10 to 50	80.5	29.5	90.5	39.5
	40	75, 100	90.5	39.5	90.5	39.5

CLG1
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP
ML1C

CLJ2

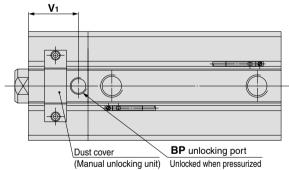
CLM2

Head Side Flange Style


Head Side Flange Style (mn									
Stroke range	Without a	uto switch	With auto switch						
otroke range	Α	В	Α	В					
10 to 50	78.5	29.5	00 E	39.5					
75, 100	88.5	39.5	00.0	39.5					
	Stroke range 10 to 50	Stroke range Without an A 10 to 50 78.5	Stroke rangeWithout auto switchAB10 to 5078.529.5	Stroke range Without auto switch With auto 10 to 50 78.5 29.5 88.5					

Double Clevis Style

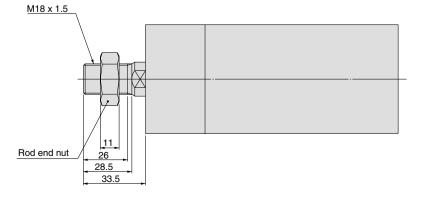
Double C	levis Styl	е					(mm)			
Bore size (mm)	Stroke range	Witho	ut auto :	switch	With auto switch					
	ou ono rungo	Α	В	CL	Α	В	CL			
40	10 to 50	102.5	29.5	92.5	112.5	39.5	102.5			
40	75, 100	112.5	39.5	102.5	112.5	39.5	102.5			


Dimensions: ø50

Both ends	tapped	stvle:	CULQA50

V1

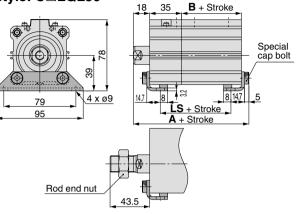
A, B Dim	A, B Dimensions (mm)														
Bore size	Stroke range	Without a	uto switch	With aut	o switch										
(mm)	(mm)	Α	В	Α	В										
	10 to 50	73.5	30.5	00 F	40 E										
50	75, 100	83.5	40.5	83.5	40.5										

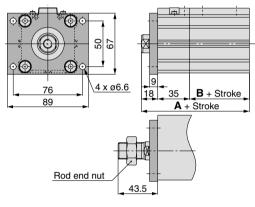


Port thread type	BP	V	V 1
Rc	1/0	13	00
NPT	1/8	13	28
G	M5 x 0.8	15	30.2

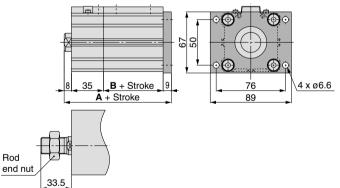
* Dimensions for cylinders with a rubber bumper are the same as the standard type above.

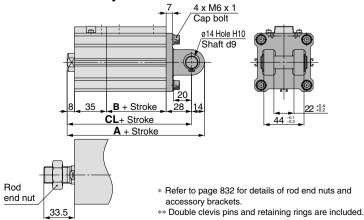
** Refer to page 832 for details of rod end nuts and accessory brackets.


Rod end male thread


Note) Be sure to use the attached flat washers when mounting a cylinder from the rod side.

Dimensions: ø50


Foot style: C LQL50


Rod side flange style: C□LQF50

Head Side flange style: C□LQG50

Double clevis style: C□LQD50

Foot Style	9						(mm)			
Bore size (mm)	Stroke range	- 1	ut auto s		With auto switch					
(11111)		A	В	LS	A	В	LS			
50	10 to 50	91.7	30.5	42.5	101.7	40.5	52.5			
50	75, 100	101.7	40.5	52.5	101.7	40.5	52.5			

Rod Side Flange Style

		i lange e	.y.o			(mm)			
	Bore size	Stroke range	Without a	uto switch	With auto switch				
	(mm)	otrono rungo	Α	В	Α	В			
	50	10 to 50	83.5	30.5	93.5	40 F			
	50	75, 100	93.5	40.5	93.5	40.5			

CLM2
CLG1
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
RLQ
MLU
MLGP
ML1C

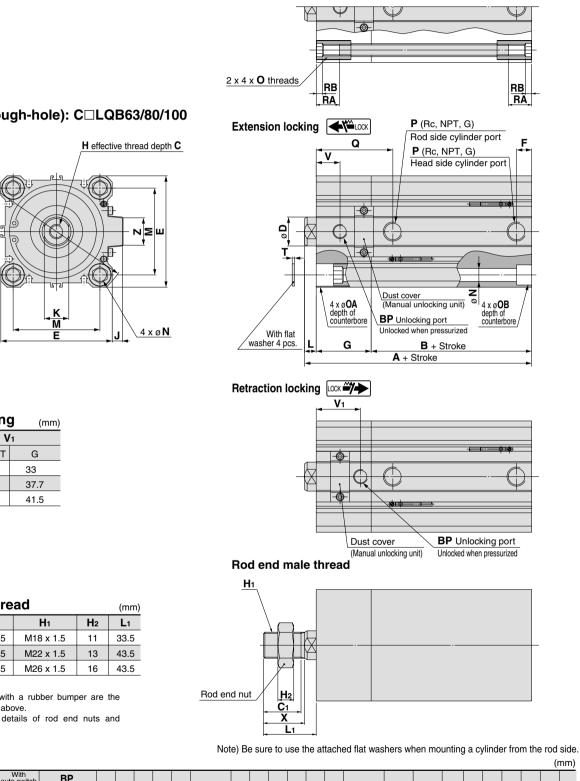
CLJ2

Head Side Flange Style

	3	,			()			
Bore size	Stroke range	Without a	uto switch	With auto switch				
(mm)	otrono rungo	Α	В	Α	В			
50	10 to 50	82.5	30.5	92.5	40.5			
50	75, 100	92.5	40.5	92.5	40.5			

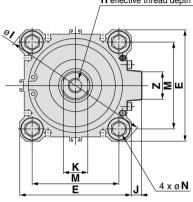
Double Clevis Style

SMC


			-					(1111)	
I	Bore size (mm)	Stroke range	Witho	ut auto :	switch	With	witch		
		Stroke range	Α	В	CL	Α	В	CL	D-
	50	10 to 50	115.5	30.5	101.5	125.5	40.5	111.5	
	50	75, 100	125.5	40.5	111.5	125.5	40.5	111.5	-X
					•				

(mm)

829


(mm)

Dimensions: ø63, ø80, ø100

Both ends tapped style: C LQA63/80/100

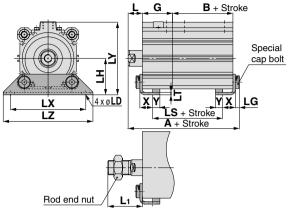
Basic style (Through-hole): C LQB63/80/100

Retraction Locking

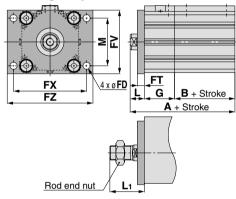
Bore size		' 1	
(mm)	Rc	NPT	G
63	30).5	33
80	35	5.5	37.7
100	40).5	41.5

Rod End	Male	Thre	ad		(mm)
Bore size (mm)	C 1	X	H1	H ₂	L1
63	26	28.5	M18 x 1.5	11	33.5
80	32.5	35.5	M22 x 1.5	13	43.5
100	32.5	35.5	M26 x 1.5	16	43.5

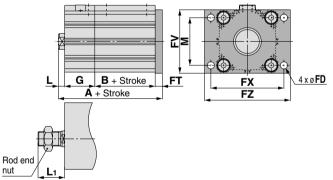
* Dimensions for cylinders with a rubber bumper are the same as the standard type above.

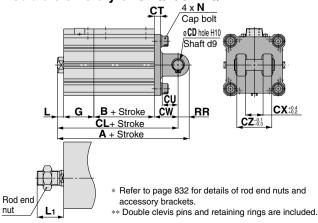

** Refer to page 832 for details of rod end nuts and accessory brackets.

																											,												
Stroke	Witl auto s	nout switch	W auto s	ith witch	В	Ρ	c	П	E	E	G	u			ĸ		м	N	0	0.4		D	0	В٨	DB	н	v	z											
) (mm)	Α	В	Α	В	Rc NPT	G	C	U	E	Г	G	п	•	J	r	L	IVI	IN	0	UA	ОВ	F	Q	ΠA	nD	I	v	2											
10 to 50	82	36	02	16	1/0	MENOO	45			10.5	00	M101 F	100	7	47			~	M0 1 .05	15.6	14	4/4	-0	10	4.0	10	10 5	10											
75, 100	92	46	32	40	1/8	0.0 X CIVI	15	20	11	10.5	38	WIU X 1.5	103	1	17	8	60	9	W8 X 1.25	depth 12	depth 10.5	1/4	53	16	4.2	1.0	16.5	19											
10 to 50	96.5	43.5	106 5	.5 53.5	6.5 53.5	6.5 53.5	6.5 53.5	6.5 53.5	06.5 53.5	3.5 53.5	6.5 53.5)6.5 53.5)6.5 53.5	53.5	5 53.5	1/0	1/0	01	05	00	10.5	40	Micyoo	100	6	00	10	77		M10 x 1 5	19.6	17.5	0/0	50	10	4.0	0	10 5	00
75, 100	106.5	53.5	100.0		1/8 1/8	1/0	21	25	98	12.5	43	43 M16 x 2.0	M16 x 2.0 132	132	6	22	10	11	11	WIUX 1.5	depth 15.5	1 1 3/	3/8	29	10	4.2	2	18.5	20										
10 to 50	115	53	105	62	1/4	1/4	07	20	447	10	50	M00 x 0 5	150	0 F	07	10	04		M10 x 1 5	19.6	17.5	0/0	70	10	4.0	•	00	00											
	125	63	120	03	1/4	1/4	21	30	117	13	50	IVIZU X 2.5	130	0.5	21	12	94	11	WIIU X 1.5	depth 15.5	depth 13.5	3/8	/3	10	4.2	2	23	26											
,	range (mm) 10 to 50 75, 100 10 to 50 75, 100 10 to 50	Interference auto : range (mm) A 10 to 50 82 75, 100 92 10 to 50 96.5 75, 100 106.5 10 to 50 115	10 to 50 82 36 75, 100 92 46 10 to 50 96.5 43.5 75, 100 106.5 53.5 10 to 50 115 53	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	index index <th< th=""><th>auto switch range (mm) auto switch A B A B Rc NPT G C D E F G H I J K L M N O OA OB P Q 1 10 to 50 82 36 92 46 1/8 M5x0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8x 1.25 15.6 14 depth 12 1/4 1/8 N 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8x 1.25 15.6 14 depth 10.5 1/4 1/4 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 10 to 50 105 53 1/2 63 1/4 1/4 27 30 117 13 50 M20 x 2.5 156 6.5 27 12 94 11 M10 x 1.5</th><th>auto switch auto switch auto switch BP C D E F G H I J K L M N O OA OB P Q RA interview auto switch auto switch B R N O OA OB P Q RA interview interview interview O P Q RA B R N O OA OB P Q RA interview interview interview A B R N O OA OB P Q RA interview interview interview Interview R Interview Interview RA N N O OA OB P Q RA interview Inter</th><th>auto switch range (mm) auto switch A B A B Rc MPT G C D E F G H I J K L M N O OA OB P Q RA RB 10 to 50 82 36 92 46 1/8 M5 x0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 depth 125 14 depth 10.5 1/4 3 8 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 depth 125 14 depth 10.5 1/4 1/4 S 16 4.2 10 to 50 96.5 43.5 106.5 53.5 1/8 1/8 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 16 4.2 10 to 50 105 53 125 63 1/4 1/4 27</th><th>auto switch range (mm) auto switch A B A B C PT G D E F G H I J K L M N O OA OB P Q RA RB T A B A B Rc NT G D E F G H I J K L M N O OA OB P Q RA RB T A 10 to 50 82 36 92 46 1/8 M5 x08 15 20 77 10.5 38 M10 x1.5 103 7 17 8 60 9 M8 x1.25 156. 14 40 1/4 1/4 21 25 98 12.5 43 M16 x2.0 132 6 22 10 77 11 M10 x1.5 19.6 17.5 3/8 9 16 4.2 2 10 to 50 155 53.5 1/8 1/8 21 27 30</th><th>B Stroke range (mm) Without auto switch Without auto switch BP C D E F G H I J K L M N O OA OB P Q RA RB T V A B A B RC NT G H I J K L M N O OA OB P Q RA RB T V A 10 to 50 82 36 92 46 1/8 M5 x 0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 14 1/4 53 16 4.2 1.6 16.5 10 to 50 92.46 92.46 1/8 1/8 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 16 4.2 2 18.5</th></th<>	auto switch range (mm) auto switch A B A B Rc NPT G C D E F G H I J K L M N O OA OB P Q 1 10 to 50 82 36 92 46 1/8 M5x0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8x 1.25 15.6 14 depth 12 1/4 1/8 N 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8x 1.25 15.6 14 depth 10.5 1/4 1/4 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 10 to 50 105 53 1/2 63 1/4 1/4 27 30 117 13 50 M20 x 2.5 156 6.5 27 12 94 11 M10 x 1.5	auto switch auto switch auto switch BP C D E F G H I J K L M N O OA OB P Q RA interview auto switch auto switch B R N O OA OB P Q RA interview interview interview O P Q RA B R N O OA OB P Q RA interview interview interview A B R N O OA OB P Q RA interview interview interview Interview R Interview Interview RA N N O OA OB P Q RA interview Inter	auto switch range (mm) auto switch A B A B Rc MPT G C D E F G H I J K L M N O OA OB P Q RA RB 10 to 50 82 36 92 46 1/8 M5 x0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 depth 125 14 depth 10.5 1/4 3 8 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 depth 125 14 depth 10.5 1/4 1/4 S 16 4.2 10 to 50 96.5 43.5 106.5 53.5 1/8 1/8 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 16 4.2 10 to 50 105 53 125 63 1/4 1/4 27	auto switch range (mm) auto switch A B A B C PT G D E F G H I J K L M N O OA OB P Q RA RB T A B A B Rc NT G D E F G H I J K L M N O OA OB P Q RA RB T A 10 to 50 82 36 92 46 1/8 M5 x08 15 20 77 10.5 38 M10 x1.5 103 7 17 8 60 9 M8 x1.25 156. 14 40 1/4 1/4 21 25 98 12.5 43 M16 x2.0 132 6 22 10 77 11 M10 x1.5 19.6 17.5 3/8 9 16 4.2 2 10 to 50 155 53.5 1/8 1/8 21 27 30	B Stroke range (mm) Without auto switch Without auto switch BP C D E F G H I J K L M N O OA OB P Q RA RB T V A B A B RC NT G H I J K L M N O OA OB P Q RA RB T V A 10 to 50 82 36 92 46 1/8 M5 x 0.8 15 20 77 10.5 38 M10 x 1.5 103 7 17 8 60 9 M8 x 1.25 15.6 14 1/4 53 16 4.2 1.6 16.5 10 to 50 92.46 92.46 1/8 1/8 21 25 98 12.5 43 M16 x 2.0 132 6 22 10 77 11 M10 x 1.5 19.6 17.5 3/8 59 16 4.2 2 18.5																			



Dimensions: ø63, ø80, ø100


Foot style: CLQL/CDLQL


Rod side flange style: CLQF/CDLQF

Head Side flange style: CLQG/CDLQG

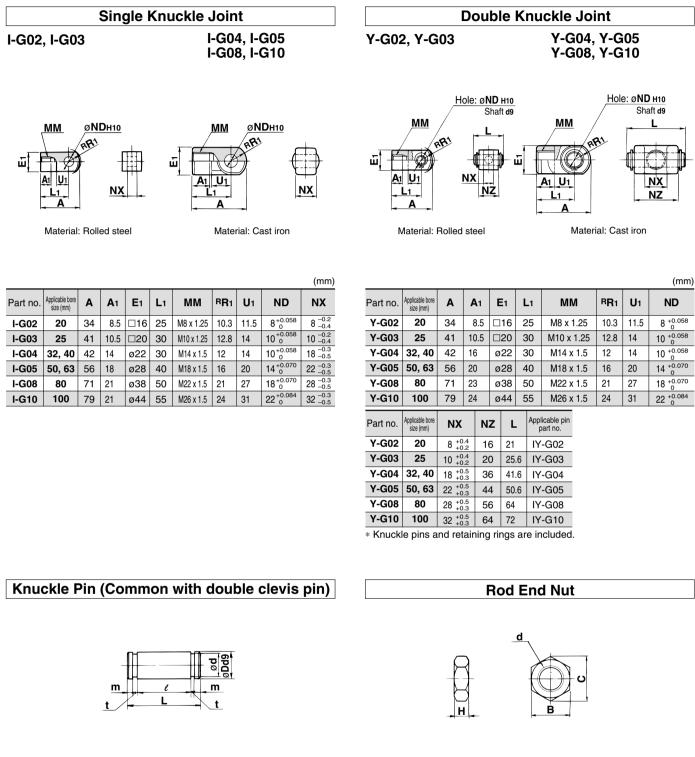
Double clevis style: CLQD/CDLQD

Bore size	Stro	Stroke Without auto switch With auto switch						witch			
(mm)	ran		Α	В	LS	Α	В	LS	G	L	_
63	10 to	o 50	100.2	36	48	110.2	46	58	38	18	C
03	75, 1	100	110.2	46	58	110.2	40	50	30	10	U
80	10 to	50	118	43.5	56.5	128	53.5	66.5	43	20	0
00	75, 1	100	128	53.5	66.5	120	55.5	00.5	40	20	CL
100	10 to		138	53	69	148	63	79	50	22	0
100	75, 1	100	148	63	79						C
Bore size (mm)	L1	LD	LG	LH	LT	LX	LY	LZ	x	Y	C
63	43.5	11	5	46	3.2	95	91.5	113	16.2	9	
80	53.5	13	7	59	4.5	118	114	140	19.5	11	M
100	53.5	13	7	71	6	137	136	162	23	12.5	_
											-
ad Cida	Flore		C+	_							C
		<u> </u>			witch	\4/ith o:	uto outi	itab		(mm)	
Bore size	Stro	ke	Withou	ut auto s		With au			FD	(mm) FT	M
	Stro ran	oke ge	Withou A	it auto s	В	With au	uto swi		FD	. ,	M
Bore size	Stro ran 10 to	oke ge 50	Withou A 92	it auto s	B 6			3	FD 9	. ,	M
Bore size (mm) 63	Stro ran 10 to 75, 7	oke ge 50 100	Withou A 92 102	it auto s	B 6 6	A 102	E 46	3	9	FT 9	M
Bore size (mm)	Stro ran 10 to 75, 10 to	oke ge 50 100 50	Withou A 92	ut auto s 3 4 5 4	B 6	Α	E 46	3	-	FT	M
Bore size (mm) 63 80	Stro ran 10 to 75, 7	oke ge 50 100 50 100	Withou 92 102 106.	ut auto s 3 4 5 4	B 6 6 3.5 3.5	A 102 116.5	E 46 53	.5	9 11	FT 9 11	M C
Bore size (mm) 63	Stro ran 10 to 75, 10 to 75,	oke ge 50 100 50 100 50	Withou 92 102 106. 116.	ut auto s 3 4 5 4 5 5	B 6 3.5 3.5 3	A 102	E 46	.5	9	FT 9	M C
Bore size (mm) 63 80	Stro ran 10 to 75, 10 to 75, 10 to	oke ge 50 100 50 100 50	Withou 92 102 106. 116. 125 135	11 auto s 3 4 5 4 5 5 5 6	B 6 3.5 3.5 3	A 102 116.5	E 46 53	.5	9 11 11	FT 9 11	M C C
(mm) 63 80 100 Bore size	Stro ran 10 to 75, 10 to 75, 10 to 75,	oke ge 50 100 50 100 50 100	Withou 92 102 106. 116. 125 135	11 auto s 3 4 5 4 5 5 5 6 7	B 6 3.5 3.5 3 3 3	A 102 116.5 135	B 46 53 63	.5	9 11 11	FT 9 11	M C C C
Bore size (mm) 63 80 100 Bore size (mm)	Stro ran 10 to 75, 10 to 75, 10 to 75, FV	bke ge 550 100 550 100 550 100 F	Withou 92 102 106. 116. 125 135 (F 2 10	3 4 5 4 5 5 5 5 6 Z	B 6 3.5 3.5 3 3 3 G	A 102 116.5 135 L	46 53 63 L1	.5 M	9 11 11	FT 9 11	C M C C C R
Bore size (mm) 63 80 100 Bore size (mm) 63	Stro ran 10 to 75, 10 to 75, 10 to 75, FV 80	bke ge 50 100 50 100 50 100 50 100 F	Withou A 92 102 106. 116. 125 135 C F 2 10 6 13	3 4 5 4 5 5 5 6 2 08 34	B 6 3.5 3.5 3 3 3 3 3 3	A 102 116.5 135 L 18	46 53 63 L1 43.5	.5 M 60	9 11 11	FT 9 11	M C C C R
Bore size (mm) 63 80 100 Bore size (mm) 63 80	Stro ran 10 to 75, 10 to 75, 10 to 75, FV 80 99	bke ge 50 100 50 100 50 100 50 100 F) 92 111	Withou A 92 102 106. 116. 125 135 C F 2 10 6 13	3 4 5 4 5 5 5 6 2 08 34	B 6 6 3.5 3.5 3 3 3 G 38 43	A 102 116.5 135 L 18 20	 Here 46 53 63 63 43.5 53.5 	.5 M 60 77	9 11 11	FT 9 11	M C C C

_			<u> </u>								(
	Bore size	Strol	ke	W	lithout au	uto switch	With a	uto swit	ch	FD	FT
	(mm)	rang	je		Α	в	A	B		FD	FI
	63	10 to	50	91		36	101	46		9	9
_	03	75, 1	00	1	01	46	101	40		3	3
	80	10 to	50	1	07.5	43.5	117.5	53.	5	11	11
	80	75, 1	00	1	17.5	53.5	117.5	0 00.	5	11	
	100	10 to	50	1	26	53	136	63		11	11
_	100	75, 1	00	1	36	63	130	03		11	
	Bore size			_							
	(mm)	FV	FX	(FZ	G	L	L1		М	
1	63	80	92	2	108	38	8	33.5	6	50	
	80	99	116	3	134	43	10	43.5	7	77	
	100	117	136	3	154	50	12	43.5	ę	94	

Head Side Flange Style

SMC


Head Side Flange Style												
Bore size	Stro						auto s		CD	ст		
(mm)	rar	ige	A	B	CL	A	В	CL		•.		
63	10 to	o 50	126	36	112	136	46	122	14	8		
	75,	75, 100 1		46	122	150	40	122	14	0		
80	10 to	o 50	152.5	43.5	134.5	162.5	53.5	144.5	18	10		
80	75,	75, 100 1		53.5	144.5	102.5	55.5	144.5	10	10		
100	10 te	o 50	182	53	160	192	63	170	22	13		
100	75,	100	192	63	170	192	03	170	22	15		
Bore size (mm)	CU	cu cw		cz	G	L	L1	١	1	RR		
63	20	30	22	44	38	8	33.5	M8 x	1.25	14		
80	27	38	28	56	43	10	43.5	M10	x 1.5	18		
100	31	45	32	64	50	12	43.5	M10	x 1.5	22		

D-□ -X□

Individual -X□

ML1C

Accessory Bracket Dimensions

Material: Rolled steel

					(mm)
Part no.	Applicable bore size (mm)	d	н	В	С
NT-02	20	M8 x 1.25	5	13	15.0
NT-03	25	M10 x 1.25	6	17	19.6
NT-04	32, 40	M14 x 1.5	8	22	25.4
NT-05	50, 63	M18 x 1.5	11	27	31.2
NT-08	80	M22 x 1.5	13	32	37.0
NT-10	100	M26 x 1.5	16	41	47.3

Material: Carbon steel

								(mm)
Part no.	Applicable bore size (mm)	D	L	d	I	m	t	Applicable retaining ring
IY-G02	20	8 -0.040 -0.076	21	7.6	16.2	1.5	0.9	Type C 8 for axis
IY-G03	25	$10 {}^{-0.040}_{-0.076}$	25.6	9.6	20.2	1.55	1.15	Type C 10 for axis
IY-G04	32, 40	$10 \ {}^{-0.040}_{-0.076}$	41.6	9.6	36.2	1.55	1.15	Type C 10 for axis
IY-G05	50, 63	14 ^{-0.050} -0.093	50.6	13.4	44.2	2.05	1.15	Type C 14 for axis
IY-G08	80	18 ^{-0.050} -0.093	64	17	56.2	2.55	1.35	Type C 18 for axis
IY-G10	100	22 -0.065 -0.117	72	21	64.2	2.55	1.35	Type C 22 for axis
Detainin		أبعمل بطعط						

* Retaining rings are included.

Simple Joint: ø32 to ø100

Joint and Mounting Bracket (Type A, Type B) Part No.

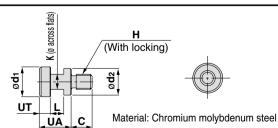
YA	- 03		plicable air inder bore
		03	ø32, ø40
• Mo	ounting bracket	05	ø50, ø63
YA	Type A mounting bracket	08	ø80
YB	Type B mounting bracket	10	ø100
YU	Joint		

Bore size	Joint	Applicable mounting bracket				
(mm)	Joint	Type A mounting bracket	Type B mounting bracket			
32, 40	YU-03	YA-03	YB-03			
50, 63	YU-05	YA-05	YB-05			
80	YU-08	YA-08	YB-08			
100	YU-10	YA-10	YB-10			

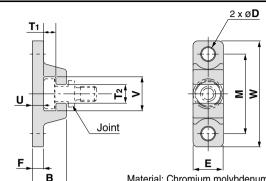
Allowable Eccentricity

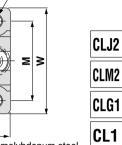
Bore size (mm)	32	40	50	63	80	100	
Eccentricity tolerance		±1				±2	
Backlash	0.5						

<Ordering>


• Joints are not included with the A or B type mounting brackets. Order them separately.

(Example) Bore size ø40


Part no. Type A mounting bracket part number-----YA-03


 Joint....YU-03

Joint

										(mm)
Part no.	Applicable bore size (mm)	UA	С	d1	d2	Н	κ	L	UT	Mass (g)
YU-03	32, 40	17	11	15.8	14	M8 x 1.25	8	7	6	25
YU-05	50, 63	17	13	19.8	18	M10 x 1.5	10	7	6	40
YU-08	80	22	20	24.8	23	M16 x 2	13	9	8	90
YU-10	100	26	26	29.8	28	M20 x 2.5	14	11	10	160

MLGC

CNG

MNB

CNA

CNS

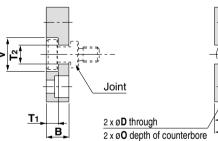
CLS

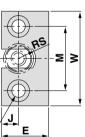
CLQ

RLQ

MLU

MLGP


ML1C


Material: Chromium molybdenum steel

							,	(mm)
Part no.	Bore size (mm)	в	D	Е	F	м	T1	T2
YA-03	32, 40	18	6.8	16	6	42	6.5	10
YA-05	50, 63	20	9	20	8	50	6.5	12
YA-08	80	26	11	25	10	62	8.5	16
YA-10	100	31	14	30	12	76	10.5	18
Part no.	Bore size (mm)	U	v	w	Mas	s (g)		
YA-03	32, 40	6	18	56	5	55		
YA-05	50, 63	8	22	67	10	00		
YA-08	80	10	28	83	19	95		
YA-10	100	12	36	100	34	10		

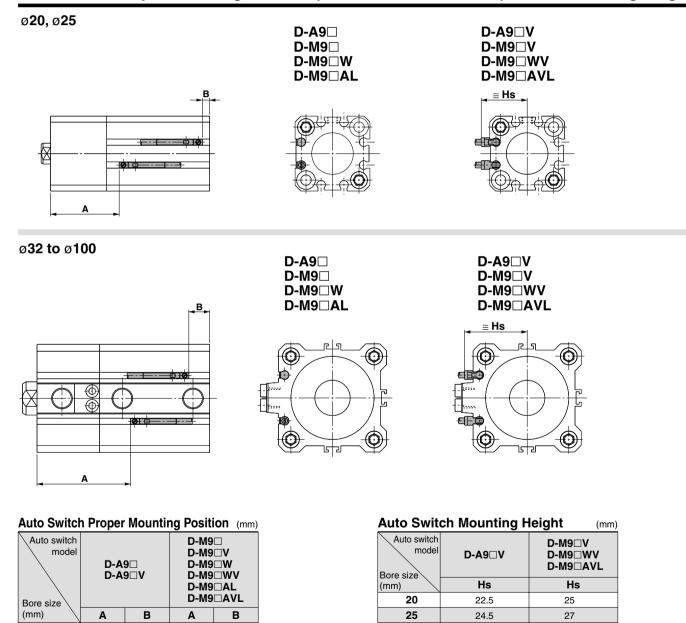
Type B Mounting Bracket

Type A Mounting Bracket

Material: Stainless steel

(mm) Bore size p p r l M

Part no.	(mm)	В	D	E	J	м	0			
YB-03	32, 40	12	7	25	9	34	t	11.5 depth 7.5		
YB-05	50, 63	12	9	32	11	42	14.5 depth 8.5			
YB-08	80	16	11	38	13	52		18 depth 12		
YB-10	100	19	14	50	17	62	21 depth 14			
Part no.	Bore size (mm)	RS	Т	1	Т	T2		w	Mass (g)	
YB-03	32, 40	9	6	.5	1	0	18	50	80	
YB-05	50, 63	11	6	.5	1	12		60	120	
					16					
YB-08	80	14	8	.5	1	6	28	75	230	


D-□

-X□ Individual **-X**□

Minimum Auto Switch Mounting Stroke

								(mm)
No. of auto switches mounted	D-M9⊟V D-F7⊟V D-J79C	D-A9□V D-A7□ D-A80 D-A73C D-A80C	D-A9□ D-M9□	D-M9⊟WV D-M9⊟AVL D-F7⊟WV D-F7BAVL	D-M9□W D-M9□AL D-A7□H D-A80H D-F7□ D-J79	D-A79W	D-F7□W D-J79W D-F7BAL D-F79F	D-P4DWL
1 pc.	5	5	10	10	15	15	20	15
2 pcs.	5	10	10	15	15	20	20	15

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

SMC

30.5

36.5

32.5

38.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

54.5

63.5

7.5

9.5

11.5

14.5

17.5

50.5

59.5

3.5

5.5

7.5

10.5

13.5

в

A

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Ø32 to Ø100 D-A7□ D-A80 D-A7□H D-A80H D-F7□ D-J79 D-F7□W D-J79W D-F79F	D-F7NTL D-F7BAL D-A73C D-A80C D-J79C D-A79W D-F7□WV D-F7□V D-F7□V D-F7BAVL	S S S S S S S	
Ø40 to Ø100 D-P4DWL			

Auto Switcl	h Proper	Mounting	Position							(mm)
Auto switch model Bore size		473 480	D-A72/A7□H D-A80H/A73C D-A80C/F7BAVL D-F7BAL/F79F D-F7□W/F7□ D-J79/F7□V D-J79/F7□V D-J79C/J79W D-F7□WV		D-F7NTL		D-A79W		D-P4DWL	
(mm)	Α	В	Α	В	Α	В	Α	В	Α	В
20	_	_	_	_	_	_	_	_	_	_
25	_	_	—	_	_	—	—	_	_	_
32	41	6	41.5	6.5	46.5	11.5	38.5	3.5	—	—
40	47	8.5	47.5	9	52.5	14	44.5	6	43	4.5
50	46	11.5	46.5	12	51.5	17	43.5	9	42	7.5
63	51.5	14.5	52	15	57	20	49	12	47.5	10.5
80	60.5	18	61	18.5	66	23.5	58	15.5	56.5	14
100	71	24	71.5	24.5	76.5	29.5	68.5	21.5	67	20

SMC

 \odot

≅ Hs

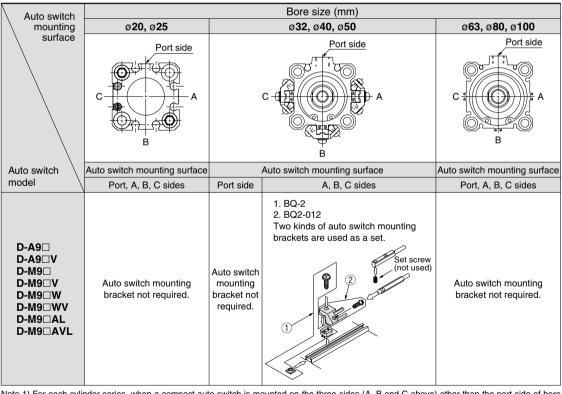
Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

Auto Switc	h Mountir	ng Height					(mm)
Auto switch model Bore size	D-A7⊟ D-A80	D-A7 H D-A80H D-F7 D D-J79 D-F7 W D-J79W D-F7BAL D-F79F D-F7NTL	D-A73C D-A80C	D-F7□V D-F7□WV D-F7BAVL	D-J79C	D-A79W	D-P4DWL
(mm)	Hs	Hs	Hs	Hs	Hs	Hs	Hs
20		—		—	_	—	—
25	_	—		—	_	—	—
32	31.5	32.5	38.5	35	38	34	_
40	35	36	42	38.5	41.5	37.5	44
50	41	42	48	44.5	47.5	43.5	50
63	47.5	48.5	54.5	51	54	50	56.5
80	57.5	58.5	64.5	61	64	60	66.5
100	67.5	68.5	74.5	71	74	70	76.5

CLJ2

Operating Range


								(mm)	
Auto switch model	Bore size (mm)								
Auto Switch model	20	25	32	40	50	63	80	100	
D-A9□/A9□V	10	10	9.5	9.5	9.5	11.5	9	11.5	
D-M9□/M9□V D-M9□W/M9□WV D-M9□AL/M9□AVL	4.5	4.5	5	5	6	6.5	6.5	7.5	
D-A7□/F7□H D-A73C D-A80/A80H D-A80C	_	_	12	11	10	12	12	13	
D-A79W	_	-	13	14	14	16	15	17	
D-F7□/F7□V D-J79/J79C D-F7□W/F7□WV D-J79W D-F7BAL/F7BAVL D-F7NTL/F79F	_	_	6	6	6	6.5	6.5	7	
D-P4DWL	—	_	_	5	5	5	5	5.5	

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion) There may be the case it will vary substantially depending on an ambient environment.

* Auto switch mounting brackets BQ2-012 are not used for sizes over ø32 of D-A9□(V)/M9□V(V)/M9□A(V)L types.

The above values indicate the operating range when mounted with the conventional auto switch installation groove.

Auto Switch Mounting Bracket: Part. No.

Note 1) For each cylinder series, when a compact auto switch is mounted on the three sides (A, B and C above) other than the port side of bore sizes ø32 to ø50, the auto switch mounting brackets above are required. Order them separately from cylinders. (It is the same as when mounting compact cylinders with an auto switch mounting rail, but not with ø63 to ø100 compact auto switch installation groove.) Example order

∕⊘SMC

CDLQB32-50-M9BW 1 unit

BQ-2 2 pcs.

BQ2-012 2 pcs

Note 2) Auto switch mounting brackets and auto switches are shipped together with cylinders.

Auto Switch Mounting Bracket: Part. No.

Auto switch model	Bore size (mm)						
Auto switch model	32	40	50	63	80	100	
D-A7 D/A80 D-A73C/A80C D-A7 H/A80H D-A79W D-F7 //J79 D-F7 V D-J79C D-F7 W/J79W D-F7 W/ D-F7 WV D-F7BAL/F7BAVL D-F79F/F7NTL			BC)-2			
D-P4DWL	—		E	3QP1-05	0		

Note 1) Auto switch mounting brackets and auto switches are shipped together with cylinders.

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment. (Please order BQ-2 separately, since the auto switch spacer (for BQ-2) is not included.)

BBA2: For D-A7/A8/F7/J7 types Water resistant auto switches, D-F7BAL/F7BAVL are set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, BBA2 is attached. Note 1) Refer to page 1817 for the details of BBA2. Note 2) When mounting D-M9⊡A(V)L on a port other than the ports for ø32, ø40 and ø50, order auto switch mounting brackets BQ2-012S, BQ-2 and stainless steel screw set BBA2 separately.

Auto Switch Mounting Bracket Mass

Auto switch mounting bracket part no.	Mass (g)
BQ-2	1.5
BQ2-012	5
BQP1-050	16

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. For details, refer to pages 1719 to 1827.

Auto switch type	Model	Electrical entry (Fetching direction)	Features	
	D-A73	Crommet (Dernendieuler)	_	
Beed D-A	D-A80	Grommet (Ferpendicular)	Without indicator light	
neeu	D-A73H, A76H	(Fetching direction) Feature Grommet (Perpendicular) ————————————————————————————————————	_	
	D-A80H		Without indicator light	
	D-F7NV, F7PV, F7BV		—	
	D-F7NWV, F7BWV	Grommet (Perpendicular)	Diagnostic indication(2-color indication)	
	D-F7BAVL		Water resistant (2-color indication)	
Solid state	D-F79, F7P, J79		—	
Solid State	D-F79W, F7PW, J79W		Diagnostic indication(2-color indication)	
	D-F7BAL	Grommet (In-line)	Water resistant (2-color indication)	
	D-F7NTL		With timer	
	D-P5DWL		Magnetic field resistant (2-color indication)	

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1784 and 1785 for details.

* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1746 for details.

* D-A7/A8/F7/J7 types cannot be mounted on ø20 and ø25.

